
University of Virginia cs4414: Operating Systems September 3, 2013

Class 2: Getting Started with Rust

Action Items

• If you think you are in the class but did not already submit a cs4414 student survey, you need to
meet with me this week. I will assume only students who submitted the survey are actually in the
class, and only those students will be assigned teammates for Problem Set 2.

• You should have at least completed the Exercises for Problem Set 1 before Thursday’s class. Problem
Set 1 is due on Tuesday, September 10.

Programming Languages

Why are there so many programming languages?

• Languages change the way we think.

• Languages provide abstractions for machine resources. The abstractions they provide are engi-
neering tradeoffs between:

– expressiveness and “truthiness”
– freedom and safety
– flexibility and simplicity
– efficiency and ease-of-use

Which of these should we prefer for a programming language for systems programming?

What’s the difference between a language and an operating system?

cs4414 Class 2: Getting Started with Rust 2

Rust

Rust is a systems programming language developed by Mozilla Research. It is a new and immature
language: the release we are using is Version 0.7 (released in July 2013).

Rust is designed with a particular focus on providing safety and efficiency. This means it provides
programmers with a lot of control over how memory is managed, but without the opportunity to shoot
yourself in the foot so readily provided by C/C++. Much of the design is driven by the needs of Servo, an
experimental, highly-parallelizable web browser engine.

Today, we will introduce some of the basics you’ll need to get started programming in Rust (and for
completing PS1). In later classes, we’ll look more deeply as some of the most interesting aspects of how
types, memory management, and concurrency work in Rust.

First Rust Program

Let’s get started with a simple Rust program:

fn max(a: int, b: int) -> int {
if a > b {

a
} else {

b
}

}

fn main() {
println(fmt!("Max: %?", max(3, 4)));

}

If you are familiar with C (or at least C++) and Java, most of this should look fairly familiar, but some
things a bit unusual.

Statements and Expressions

Hypothesized Rust grammar (the Rust manual has a grammar, but “looking for consistency in the
manual’s grammar is bad: it’s entirely wrong in many places”):

IfExpression ::= if Expression Block [else Block]

Block ::= { [Statement* Expr] }

Expression ::= Block

How is the meaning of ; different in Rust and Java?

http://www.rust-lang.org
http://www.mozilla.org/en-US/research/
https://github.com/mozilla/servo

cs4414 Class 2: Getting Started with Rust 3

Higher-Order Functions

We can make new functions directly:

LambdaExpression ::= | Parameters | Block

Define a function, make_adder(int) -> ~fn(int) -> int, that takes an integer as input and returns a
function that takes and int and returns the sum of the original and input int.

fn ntimes(f: extern fn(int) -> int, times: int) -> ~fn(int) -> int {

}

fn double(a: int) -> int {
a * 2

}

fn main() {
let quadruple = ntimes(double, 2);
println(fmt!("quad: %?", quadruple(2))); // 8

}

Reading a File

We will use the std:io::file_reader function to read a file (as you’ll note if you follow the link, the
current Rust documentation is very sparse and incomplete!):

fn file_reader(path: &Path) -> Result<@Reader, ~str>

This function takes as Path as input and returns as Result<@Reader, ~str>.

Result is an enumerated type with two type parameters. Its value is either:

• Ok(T) - A successful value of type T
• Err(U) - An error of type U

http://static.rust-lang.org/doc/0.7/std/io.html#function-file_reader
http://static.rust-lang.org/doc/0.7/std/path.html
http://static.rust-lang.org/doc/0.7/std/result.html#enum-result
http://static.rust-lang.org/doc/0.7/rust.html#enumerated-types

cs4414 Class 2: Getting Started with Rust 4

Result types provide a way of dealing with errors without all the uncertainty and complexity of exceptions.
So, in this case, Result<@Reader, ~str> is either a @Reader, corresponding to successfully opening the
file, or an ~str, corresponding to an error message when the file cannot be opened. (The @ and ~ indicate
different types of pointers; we’ll get to that later.)

Why are (Java-style) exceptions a bad thing in a language focused on safety?

We can use pattern matching to control execution based on the type of the Enum:

fn load_file(pathname : ~str) -> ~[~str] {
let filereader : Result<@Reader, ~str> = io::file_reader(~path::Path(pathname));
match filereader {

Ok(reader) => reader.read_lines(),
Err(msg) => fail!("Cannot open file: " + msg),

}
}

Note that match is an expression just like if! There’s no need to return reader.read_lines(), its the
value of the expression that is the body of load_file. (Also, note that this isn’t a smart way to do this for
large files, since it requires storing the whole file in memory.)

Match expressions must be complete:

match filereader {
Ok(reader) => reader.read_lines(),

}

produces a compile-time error.

Match predicates can be arbitrary expressions:

fn collatz(n : int) -> int {
let mut count = 0;
let mut current = n;

while current != 1 {
current =

match current {
current if current % 2 == 0 => current / 2,
_ => 3 * current + 1

};
count += 1

http://static.rust-lang.org/doc/tutorial.html#control-structures

cs4414 Class 2: Getting Started with Rust 5

}
count

}

fn main() {
for std::int::range(1, 100) |i| {

println(fmt!("hailstone %d = %d", i, collatz(i)));
}

}

Ways to Get Help

1. Search engines are your friend: reading files in rust Hints: unfortunately “rust” is a common word,
and not (yet) a widely used language. If you know a specific function, easy to search on that (but
harder if you don’t know).

2. Stackoverflow can be great. . . but not much Rust discussion yet.

3. Experiment! The compiler is very helpful, and mostly provides good error and warning messages.
Use fmt!("%?", x) to print out (almost) anything.

4. Ask for help:

• Piazza course forum
• IRC - most of the Rust developers hang out there and are quick to answer questions

If you figure something useful out that is not well documented, document it! Help out the class, the Rust
community, and gain fame and fortune for yourself by creating good documentation and posting it in
useful ways (course Piazza forum, your blog, reddit, etc.).

zhttpto.rs

extern mod extra;

use extra::{uv, net_ip, net_tcp};
use std::str;

static BACKLOG: uint = 5;
static PORT: uint = 4414;
static IPV4_LOOPBACK: &'static str = "127.0.0.1";

fn new_connection_callback(new_conn :net_tcp::TcpNewConnection,
_killch: std::comm::SharedChan<Option<extra::net_tcp::TcpErrData>>)

{
do spawn {

let accept_result = extra::net_tcp::accept(new_conn);
match accept_result {

http://stackoverflow.com/questions/tagged/rust
https://piazza.com/virginia/fall2013/cs4414
\T1\textbar {}filename\T1\textbar {}../../pages/tools/irc.md
https://piazza.com/virginia/fall2013/cs4414
http://www.reddit.com/r/rust/

cs4414 Class 2: Getting Started with Rust 6

Err(err) => {
println(fmt!("Connection error: %?", err));

},
Ok(sock) => {

let peer_addr: ~str = net_ip::format_addr(&sock.get_peer_addr());
println(fmt!("Received connection from: %s", peer_addr));

let read_result = net_tcp::read(&sock, 0u);
match read_result {

Err(err) => {
println(fmt!("Receive error: %?", err));

},
Ok(bytes) => {

let request_str = str::from_bytes(bytes.slice(0, bytes.len() - 1));
println(fmt!("Request received:\n%s", request_str));
let response: ~str = ~"HTTP/1.1 ..."; // full response removed
net_tcp::write(&sock, response.as_bytes_with_null_consume());

},
};

}
}

};
}

fn main() {
net_tcp::listen(net_ip::v4::parse_addr(IPV4_LOOPBACK), PORT, BACKLOG,

&uv::global_loop::get(),
|_chan| { println(fmt!("Listening on tcp port %u ...", PORT)); },
new_connection_callback);

}

Links

Tony Hoare’s talk, Null References: The Billion Dollar Mistake

David Evans Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://www.cs.virginia.edu/evans/cs4414

http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
http://www.cs.virginia.edu/evans/cs4414

	Action Items
	Programming Languages

	
	
	
	
	Rust
	First Rust Program
	Statements and Expressions

	
	Higher-Order Functions

	
	
	Reading a File

	
	
	Ways to Get Help
	zhttpto.rs
	Links

