
1967 A CM Turing Lecture

Computers Then and Now

MAURICE ¥. WILKES

Cambridge University, Cambridge, England

ABSTRACT: Reminiscences on the early developments leading to]arge scale electronic com-
puters show that it took much longer than was expected for the first of the more ambitious and
fully engineered computers to be completed and prove themselves in practical operation. Com-
ments on the present computer field assess the needs for future development.

:KEY WORDS AND PHRASES: Moore School, ENIAC, Mauchly, Eckert, Wilkes, yon Neumann,
Turing, optimum coding, ultrasonic delay line, Carr, Hopper, automatic programming, com-
pilers, interpreters, history, prediction

cR CATEGORIES: 1.2, 1.3

I do not imagine that many of the Turing lecturers who will follow me will be
people who were acquainted with Alan Turing. The work on computable numbers,
for which he is famous, was published in 1936 before digital computers existed. Later
he became one of the first of a distinguished succession of able mathematicians who
have made contributions to the computer field. He was a colorful figure in the early
days of digital computer development in England, and I would find it difficult to
speak of that period without making some references to him.

Pioneering Days

An event of first importance in my life occurred in 1946, when I received a tele-
gram inviting me to at tend in the late summer of that year a course on computers at
the Moore School of Electrical Engineering in Philadelphia. I was able to attend the
latter part of the course, and a wonderful experience it was. No such course had ever
been held before, and the achievements of the Moore School, and other computer
pioneers, were known to few. There were 28 students from 20 organizations. The
principal instructors were John Mauchly and Prosper Eckert. They were fresh from
their tr iumph as designers of the ENIAC, which was the first electronic digital com-
puter, although it did not work on the stored program principle. The scale of this
machine would be impressive even today-- i t ran to over 18,000 vacuum tubes.
Although the EN~AC was very successful--and very fast--for the computation of
ballistic tables, whichwas the application for which the project was negotiated, it
had severe limitations which greatly restricted its application as a general purpose
computing device. In the first place, the program was set up by means of plugs and
sockets and switches, and it took a long time to change from one problem to another.
In the second place, it had internal storage capacity for 20 numbers only. Eckert
and Mauchly appreciated that the main problem was one of storage, and they pro-

Presented at the ACM 20th Anniversary Conference, Washington, D.C., August 1967.

Journal of the Aasooiatlon for Computing Machinery, Vol. 18, No. 1, January 1968, pp. 1-7.

2 MAURICE V. WILKEs

posed for future machines the use of ultrasonic delay lines. Instructions and numbers
would be mixed in the same memory in the way to which we are now accustomed.
Once the new principles were enunciated, it was seen that computers of greater
power than the ENIAC could be built with one tenth the amount of equipment.

Von Neumann was, at that time, associated with the Moore School group in a
consultative capacity, although I did not personally become acquainted with him
until somewhat later. The computing field owes a very great debt to yon Neumann.
He appreciated at once the possibilities of what became known as logical design,
and the potentialities implicit in the stored program principle. That yon Neumann
should bring his great prestige and influence to bear was important, since the new
ideas were too revolutionary for some, and powerful voices were being raised to say
that the ultrasonic memory would not be reliable enough, and that to mix instruc-
tions and numbers in the same memory was going against nature.

Subsequent developments have provided a decisive vindication of the principles
taught by Eckert and Mauchly in 1946 to those of us who were fortunate enough to
be in the course. There was, however, a difficult period in the early 1950s. The first
operating stored-program computers were, naturally enough, laboratory models;
they were not fully engineered and they by no means exploited the full capability of
the technology of the time. It took much longer than people had expected for the
first of the more ambitious and fully engineered computers to be completed and
prove themselves in practical operation. In retrospect, the period seems a short one;
at the time, it was a period of much heart searching and even recrimination.

I have often felt during the past year that we are going through a very similar
phase in relation to time sharing. This is a development carrying with it many far-
reaching implications concerning the relationship of computers to individual users
and to communities, and one that has stirred many people's imaginations. I t is now
several years since the pioneering systems were demonstrated. Once again, it is
taldng longer than people expected to pass from experimental systems to highly
developed ones that fully exploit the technology that we have available. The result
is a period of uncertainty and questioning that closely resembles the earlier period
to which I referred. When it is all over, it will not take us long to forget the trials
and tribulations that we are now going through.

In ultrasonic memories, it was customary to store up to 32 words end to end in
the same delay line. The pulse rate was fairly high, but people were much worried
about the time spent in waiting for the right word to come around. Most delay line
computers were, therefore, designed so that, with the exercise of cunning, the pro-
grammer could place his instructions and numbers in the memory in such a way that
the waiting time was minimized. Turing himself was a pioneer in this type of logical
design. Similar methods were later applied to computers which used a magnetic
drum as their memory and, altogether, the subject of optimum coding, as it was
called, was a flourishing one. I felt that this kind of human ingenuity was misplaced
as a long-term investment, since sooner or later we would have truly random-access
memories. We therefore did not have anything to do with optimum coding in Cam-
bridge.

Although a mathematician, Turing took quite an interest in the engineering side
of computer design. There was some discussion in 1947 as to whether a cheaper sub-
stance than mercury could not be found for use as an ultrasonic delay medium.

Journal of the AMoclation for Computing Machinery, Vol. 15p No. 1, January 1968

1967 Turing Lecture 3

Turing's contribution to this discussion was to advocate the use of gin, which he
said contained alcohol and water in just the right proportions to give a zero tem-
perature coefficient of propagation velocity at room temperature.

A source of strength in the early days was that groups in various parts of the world
were prepared to construct experimental computers without necessarily intendfi~g
them to be the prototype for serial production. As a result, there became available a
body of knowledge about what would work and what would not work, about what
it was profitable to do and what it was not profitable to do. While, looking around at
the computers commercially available today, one cannot feel that all the lessons were
learned, there is no doubt that this diversity of research in the early days has paid
good dividends. It is, I think, important that we should have similar diversity today
when we are learning how to construct large, multiple-access, multi-programmed,
multi-processor computer systems. Instead of putting together components and
vacuum tubes to make a computer, we have now to learn how to put together mem-
ory modules, processors, and peripheral devices to make a system. I hope that money
will be available to finance the construction of large systems intended for research
0 n i y .

Much of the early engineering development of digital computers was done in
universities. A few years ago, the view was commonly expressed that universities
had played their part in computer design, and that the matter could now safely be
left to industry. I do not think that it is necessary that work on computer design
should go on in all universities, but I am glad that some have remained active in the
field. Apart from the obvious functions of universities in spreading knowledge, and
keeping in the public domain material that might otherwise be hidden, universities
can make a special contribution by reason of their freedom from commercial con-
siderations, including freedom from the need to follow the fashion.

Good Language and Bad

Gradually, controversies about the design of computers themselves died down and
we all began to argue about the merits or demerits of sophisticated programming
techniques; the battle for automatic programming or, as we should now say, for the
use of higher level programming languages, had begun. I well remember taking part
at one of the early ACM meetings--it must have been about 1953--in a debate on
this subject. John Carr was also a speaker and he distinguished two groups of pro-
grammers; the first comprised the "primitives," who believed that ,all instructions
should be written in octal, hexadecimal, or some similar form, and who had no time
for what they called fancy schemes, while the second comprised the "space cadets,"
who saw themselves as the pioneers of a new age. I hastened to enroll myself as a
space cadet, although I remember issuing a warning against relying on interpretive
systems, for which there was then something of a vogue, rather than on compilers.
(I do not think that the term compiler was then in general use, although it had in
fact been introduced by Grace Hopper.)

The serious arguments advanced against automatic programming had to do with
efficiency. Not only was the running time of a compiled program longer than that
of a hand-coded program, but, what was then more serious, it needed more memory.
In other words, one needed a bigger computer to do the same work. We all know

Journal of the A~socia~on for Computing Machinery, Yol. 15, No. 1, January 1968

MAURICE V. W I L K E S

that these arguments, although valid, have not proved decisive, and that people
have found that it has paid them to make use of automatic programming. In fact,
the spectacular expansion of the computing field during the last few years would
otherwise have been impossible. We have now a very similar debate raging about
time sharing, and the arguments being raised against it are very similar to those
raised earlier against automatic programming. Here again, I am on the side of the
space cadets, and I expect the debate to have a similar oui~come.

Incidentally, I fear that in that automatic progranuning debate Turing would
have been definitely on the side of the primitives. The programming system that he
devised for the pioneering computer at Manchester University was bizarre in the
extreme. He had a very nimble brain himself and saw no need to make concessions
to those less well-endowed. I remember that he had decided--presumably because
someone had shown him a train of pulses on an oscilloscope--that the proper way to
write binary numbers was backwards, with the least significant digit on the left. He
would, on occasion, carry this over into decimal notation. I well remember that once,
during a lecture, when he was multiplying some decimal numbers together on the
blackboard to illustrate a point about checking a program, we were all unable to
follow his working until we realized that he had written the numbers backwards. I
do not think that he was being funny, or trying to score off us; it was simply that he
could not appreciate that a trivial matter of that kind could affect anybody's under-
standing one way or the other.

I believe that in twenty years people will look back on the period in which we are
now living as one in which the principles underlying the design of programming
languages were just beginning to be understood. I am sorry when I hear well-mean-
ing people suggest that the time has come to standardize on one or two languages.
We need temporary standards, it is true, to guide us on our way, but we must not
expect to reach stability for some time yet.

The Higher Syntax

A notable achievement of the last few years has been to secure a much improved
understanding of syntax and of syntax analysis. This has led to practical advances
in compiler construction. An early achievement in this field, not adequately recog-
nized at the time, was the Compiler-Compiler of Brooker and Morris.

People have now begun to realize that not all problems are linguistic in character,
and that it is high time that we paid more attention to the way in which data are
stored in the computer, that is, to data structures. In his Turing lecture given last
year, Alan Perlis drew attention to this subject. At the present time, choosing a
programming language is equivalent to choosing a data structure, and if that data
structure does not fit the data you want to manipulate then it is too bad. I t would,
in a sense, be more logical first to choose a data structure appropriate to the problem
and then look around forr, or construct with a kit of tools provided, a language suita-
ble for manipulating that data structure. People sometimes talk about high-level
and low-level programming languages without defining very clearly what they mean.
If a high-level programming language is one in which the data structure is fixed and
unalterable, and a low4evel language is one in which there is some latitude in the

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

1~67 Turiing Lecture 5

choice of data structures, then I think that we may see a swing toward low-level
programming languages for some purposes.

I would, however, make this comment. In a high-level language, much of the
syntax, and a large part of the compiler, are concerned with the mechanism of mak-
ing declarations, the forming of compound statements out of simple statements, and
with the machinery of conditional statements. All this is entirely independent of
what the statements that really operate on the data do or what the data structure
is like. We have, in fact, two languages, one inside the other; an outer language that
is concerned with the flow of control, and an inner language which operates on the
data. There might be a case for having a standard outer language--or a small num-
ber to choose from--and a number of inner languages which could be, as it were,
plugged in. If necessary, in order to meet special circumstances, a new inner language
could be constructed; when plugged in, it would benefit from the power provided by
the outer language in the matter of organizing the flow of control. When I think of
the number of special languages that we are beginning to require---for example, for
real time control, computer graphics, the writing of operating systems, etc.,--the
more it seems to me that we should adopt a system which would save us designing
and learning to use a new outer language each time.

The fundamental importance of data structures may be illustrated by considering
the problem of designing a single language that would be the preferred language
either for a purely arithmetic job or for a job in symbol manipulation. Attempts to
produce such a language have been disappointing. The difficulty is that the data
structures required for efficient implementation in the two cases are entirely different.
Perhaps we should recognize this difficulty as a fundamental one, and abandon the
quest for an omnibus language which will be all things to all men.

There is one development in the software area which is, perhaps, not receiving
the notice that it deserves. This is the increasing mobility of language systems from
one computer to another. I t has long been possible to secure this mobility by writing
the system entirely in some high-level programming language in wide use such as
_ALGOL or FORTRAN. This method, however, forces the use of the data structures
implicit in the host language and this imposes an obvious ceiling on efficiency.

In order that a system may be readily transferred from one computer to another,
other than v/a a host language, %he system must be written in the first place in
machine-independent form. This would not be the place to go into the various
techniques that are available for transferring a suitably constructed system. They
include such devices as bootstrapping, and the use of primitives and macros. Fre-
quently the operation of transfer involves doing some work on a computer on which
the system is already running. Harry Huskey did much early pioneer work in this
subject with the N~u~e system.

There is reason to hope that the new-found mobility will extend itself to operating
systems, or at least to substantial parts of them. Altogether, I feel that we are enter-
ing a new period in which the inconveniences of basic machine-code incompatibility
will be less felt. The increasing use of internal filing systems in which information
can be held within the system in alphanumeric, and hence in essentially machine-
independent, form, will accentuate the trend. In.formation so held can be trans-
formed by algorithm to any other form in which it may be required. We must get

Journal of the Association for Computing MacMnery, ¥ol, 15, No, 1, January 1968

6 MAURICE V. WILKES

used to regarding the machine-independent form as the basic one. We will then be
quite happy to attach to our computer systems groups of devices that would now be
regarded as fundamentally incompatible; in particular, I believe that in the large
systems of the future the processors will not necessarily be all out of the same stable.

Design and Assembly

A feature of the last few years has been an intensive interest in computer graphics.
I believe that we in the computer field have long been aware of the utility in appro-
priate circumstances of graphical means of communication with a computer, but I
think that many of us were surprised by the appeal that the subject had to mechan-
ical engi~mers. Engineers are used to communicating with each other by diagrams
and sketches and, as soon as they saw diagrams being drawn on the face of a cathode-
ray tube, many of them jumped to the conclusion that the whole problem of using a
computer in engineering design had been solved. We, of course, know that this is far
from being the case, and that much hard work will be necessary before the potential
utility of displays can be realized. The initial reaction of engineers showed us, how-
ever, two things that we should 1mr forget. One is that, in the judgment of design
engineers, the ordinary means of communicating with a computer are entirely
inadequate. The second is that graphical communication in some form or other is of
vital importance in engineering as that subject is now conducted; we must either
provide the capability in our computer systems, or take on the impossible task of
training up a future race of engineers conditioned to think in a different way.

There are signs that the recent growth of interest in computer graphics is about
to be followed by a corresponding growth of interest in the manipulation of objects
by computers. Several projects in this area have been initiated. The driving force be-
hind them is largely an interest in artificial intelligence. Both the tasks chosen and
the programming strategy employed reflect this interest.

My own interest in the subject, however, is more practical. I believe that com-
puter controlled mechanical handling devices have a great future in factories and
elsewhere. The production of engineering components has been automated to a
remarkable extent, and the coming of numerically-controlled machine tools has
enabled quite elaborate components to be produced automatically in relatively small
batches. By contrast, much less progress has been made in automating the assembly
of components to form complete articles.

The artificial intelligence approach may not be altogether the right one to make
to the problem of designing automatic assembly devices. Animals and machines are
constructed from entirely different materials and bn quite different principles. When
engineers have tried to draw inspiration from a study of the way animals work they
have usually been misled; the history of early attempts to construct flying machines
with flapping wings illustrates this very clearly. My own view is that we shall see,
before very long, computer-controlled assembly belts with rows of automatic han-
dling machines arranged alongside them, and controlled by the same computer
system. I believe that these handling machines will resemble machine tools rather
than fingers and thumbs, although they will be lighter in construction and will rely
heavily on feedback from sensing elements of various kinds.

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

...~.

w m K ~

then be
[now be
he large
e stable.

i

;raphica
a appro~

:h

~r, b u t I
mechan=
tiagram~
~athode~
f using a
his is fa~
)otential • .:...

us, h o ~
~f desig~
en%irel~

~her is 0!
s t e i th~ i

t a s k 0~
r ay . ~
is about:

f ob j ecrU.
fo roe be:i
o s e n aad:i.

i~:~
ha t com~i:,

) r ies and::;
,ted to ,~:..
~ools h ~ :
e ly s n ~ i
 ss b!i

• i~
.. ~:/.!~

to
• h i n e s ~

tt;
m a c h i ~ i !

1967 Turing Lecture 7

The Next Breakthrough

I suppose that we are all asking ourselves whether the computer as we now know it
is here to stay, or whether there will be radical innovations. In considering this
question, it is well to be clear exactly what we have achieved. Acceptance of the idea
that a processor does one thing at a time--at any rate as the programmer sees i t - -
made programming conceptually very simple, and paved the way for the layer upon
layer of sophistication that we have seen develop. Having watched people try to
program early computers in which multiplications and other operations went on in
parallel, I believe that the importance of this principle can hardly be exaggerated.
From the hardware point of view, the same principle led to the development of
systems in which a high factor of hardware utilization could be maintained over a
very wide range of problems, in other words to the development of computers that
are truly general purpose. The Em~e, by contrast, contained a great deal of hard-
ware, some of it for computing and some of it for programming, and yet, on the
average problem, only a fraction of this hardware was in use at any given time.

Revolutionary advances, if they come, must come by the exploitation of the high
degree of parallelism that the use of integrated circuits will make possible. The
problem is to secure a satisfactorily high factor of hardware utilization, since, with-
out this, parallelism will not give us greater power. Highly parallel systems tend to
be efficient only on the problems that the designer had in his mind; on other prob-
lems, the hardware utilization factor tends to fall to such an extent that conven-
tional computers are, in the long run, more efficient. I think that it is inevitable that
in highly parallel systems we shall have to accept a greater degree of specialization
towards particular problem areas than we are used to now. The absolute cost of
integrated circuits is, of course, an important consideration, but it should be noted
that a marked fall in cost would also benefit processors of conventional design.

One area in which I feel that we must pin our hopes on a high degree of paral-
lelism is that of pattern recognition in two dimensions. Present-day computers are
woefully inefficient in this area. I am not thinking only of such tasks as the recogni-
tion of written characters. Many problems in symbol manipulation have a large
element of pattern recognition in them, a good example being syntax analysis. I
would not exclude the possibility that there may be some big conceptual break-
through in pattern recognition which will revolutionize the whole subject of com-
puting.

Summary

I have ranged over the computer field from its early days to where we are now. I did
not start quite at the beginning, since the first pioneers worked with mechanical
and electro-mechanical devices, rather than with electronic devices. We owe them,
however, a great debt, and their work can, I think, be studied with profit even now.

Surveying the shifts of interest among computer scientists and the ever-expanding
family of those who depend on computers in their work, one cannot help being struck
by the power of the computer to bind together, in a genuine community of interest,
people whose motivations differ widely. It is to this that we owe the vitality and
vigor of our Association. If ever a change of name is thought necessary, I hope that
the words "computing machinery" or some universally recognized synonym will
remain. For what keeps us together is not some abstraction, such as Turing ma-
chine, or information, but the actual hardware that we work with every day.

Journal of the .Association for Computing M a o h i n e r y , V o l . 15, N o . 1, J a n u a r y 1968

