University of Virginia cs4414: Operating Systems October 24, 2013

Class 16: AppleFanning

Action Items

Problem Set 3 is due Monday, 28 October.

Everyone should have received an email with their midterm results (and other recorded grades so far). If
you didn’t get it, send me email (evans@cs.virginia.edu). If you already sent me email but didn’t get a
response yet, please let me know after class today.

Project

4 Nov: Due: Project Proposals (more details posted soon)
18 Nov: Due: Project Design Reviews
5 Dec: Due: Project Demos

Do something that is fun (for you to do, and others to see), relevant (to the class), technically interesting
(to you and me), and useful (at least to you, hopefully to many). You probably can’'t maximize all of these!
It is okay to sacrifice one or two of them to increase others. A good project should be strong on at least 2
of these, which is much better than being mediocre of all four.

AppleFan
From http://opensource.apple.com/source/AppleFan/AppleFan-110.3.1/AppleFan.cpp:

AppleFan.cpp [plain text]
/*
Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved.

Q@APPLE_LICENSE_HEADER_STARTQ@

The contents of this file constitute Original Code as defined in and
are subject to the Apple Public Source License Version 1.1 (the
"License"). You may not use this file except in compliance with the
License. Please obtain a copy of the License at

http://www.apple. com/publicsource and read it before using this file.

This Original Code and all software distributed under the License are
distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
License for the specific language governing rights and limitations
under the License.

¥ ¥ ¥ X ¥ ¥ X ¥ ¥ ¥ X ¥ ¥ X X ¥ % x *

Q@APPLE_LICENSE_HEADER_END®@

http://opensource.apple.com/source/AppleFan/AppleFan-110.3.1/AppleFan.cpp

cs4414 Class 16: AppleFanning

*/
/*

* Copyright (c) 2002 Apple Computer, Inc.

*

*/

#include
#include
#include
#include

N
*

¥ ¥ ¥ %X X ¥ * x

*/

static fan_speed_table_t gDefaultSpeedTable

<IOKit/pwr_mgt/RootDomain.h>
<I0Kit/IOMessage.h>
<mach/clock_types.h>
"AppleFan.h"

Default Parameters

{ 0x3900, 0x3A4A, 0x3Ad3, 0x3B3C,
0x3B94, Ox3BE3, 0x3C29, 0x3C6A,
0x3CA6, 0x3CD7, 0x3D15, 0x3D48,
0x3D78, 0x3DA7, 0x3DD4, 0x3E00 };

/%

* Hysterests Temperature 55 C

*/

All rights reserved.

First look for defaults in the personality, otherwise we fall back to these
hard coded ones.

Speed Table: Linear Ramp, Minimum 57C, Mazimum 62C

Note: These temperatures are ezxpressed in 8.8 fized point wvalues.

static SInt16 gDefaultHysteresisTemp = 0x3700;

/%

* Polling Period (seconds)

*/

static UInt64 gDefaultPollingPeriod = 8;

/%

* Speedup Delay (seconds)

*/

static UInt64 gDefaultSpeedupDelay = 8;

void AppleFan::free(void)

if (pollingPeriodKey) pollingPeriodKey->release();
if (speedTableKey) speedTableKey->release();

if (speedupDelayKey) speedupDelayKey->release();

if (slowdownDelayKey) slowdownDelayKey->release();
if (hysteresisTempKey) hysteresisTempKey->release();
if (getTempSymbol) getTempSymbol->release();

#ifdef APPLEFAN_DEBUG

cs4414 Class 16: AppleFanning

if (currentSpeedKey) currentSpeedKey->release();

if (currentCPUTempKey) currentCPUTempKey->release();

if (forceUpdateKey) forceUpdateKey->release();
#endif

super: :free();

}

bool AppleFan::start(I0Service *provider)
{

OSData*tmp_osdata;

UInt32*tmp_uint32;

I0Service*tmp_svc;

const 0SSymbol*uninI2C;

mach_timespec_t WaitTimeOut;

// We have two power states - off and on

static const IOPMPowerState powerStates[2] = {

{1, o0,0,0,0,0,0,0,0,0,0,0]73,

{ 1, IOPMDeviceUsable, IOPMPowerOn, IOPMPowerOmn, O, O, O, O, O, O, O, O }
3

// Use a 30 second timeout when calling waitForService()
WaitTimeOut.tv_sec = 30;
WaitTimeOut.tv_nsec = 0;

if (!super::start(provider)) return(false);

// get my I2C address from the device tree
tmp_osdata = 0SDynamicCast(0SData, provider->getProperty("reg"));
if ('tmp_osdata)
{
return(false);

}

tmp_uint32 = (UInt32 *)tmp_osdata->getBytesNoCopy();

fI2CBus = (UInt8) (*tmp_uint32 >> 8);

fI2CAddr = (UInt8)*tmp_uint32;

fI2CAddr >>= 1;// right shift by one to make a 7-bit address

DLOG("@AppleFan: :start fI2CBus=)02x fI2CAddr=%02x\n",
fI2CBus, fI2CAddr);

// find the UniN I2C driver
uninI2C = 0SSymbol::withCStringNoCopy ("PPCI2CInterface.i2¢c-uni-n");
tmp_svc = waitForService(resourceMatching(uninI2C), &WaitTimeOut) ;
if (tmp_svc)
{
I2C_iface = (PPCI2CInterface *)tmp_svc->getProperty(uninI2C) ;
}

if (uninI2C) uninI2C->release();

cs4414 Class 16: AppleFanning

3

// I2C_iface is initialized to O so if it is not set here, we didn't find I2C
PMinit();

provider->joinPMtree (this);

registerPowerDriver(this, (IOPMPowerState *)powerStates, 2);

// Get restart and shutdown events too
registerPrioritySleepWakeInterest (sPMNotify, this, NULL);

// Register with I/0 Kit matching engine
registerService();

// do the initial update. this sets a timeout as its last step and
// begins the fan control in motion.
doUpdate (true) ;

DLOG("-AppleFan: :start\n");

return(true);

. // ~100 lines removed
I0Log("AppleFan: :setProperties SOMETHING IS VERY WRONG!!!");

/KA A A KA A A A KA A A A KA HH KA A e He A A KA H KA H A HH KA HH KA A e He A A KA H KA H A KA A A A KKK

doUpdate() is where we read the CPU temp and look it up in the speed table to

choose a fan speed. Also here is the timer callback routine which repeatedly

calls doUpdate().

R A A A A A A A A A I HE A HE A AT HFE A F A A A A H A A A A A A A KK AA KK KA KK KKK KKK f

void AppleFan::doUpdate(bool first)

{

AbsoluteTime interval;
UInt8 newSpeed;
SInt16 cpu_temp;

DLOG("+AppleFan: :doUpdate\n");

// Get temperature data
if (!getCPUTemp (&cpu_temp))
{
I0Log("AppleFan: :doUpdate ERROR FETCHING CPU TEMP!!!\n");
restoreADM1030State (&fSavedRegs) ;
terminate();
return;

}

// look up the fan speed

newSpeed = 0;

while ((cpu_temp >= fSpeedTable[newSpeed]) && (newSpeed < (kNumFanSpeeds - 1)))
newSpeed++;

// set fan speed cfg register

cs4414 Class 16: AppleFanning

setFanSpeed(newSpeed, cpu_temp, first);

// tmplement a periodic timer
if (first) clock_get_uptime(&fWakeTime) ;

nanoseconds_to_absolutetime (fPollingPeriod, &interval);
ADD_ABSOLUTETIME (&fWakeTime, &interval);

thread_call_enter_delayed(timerCallout, fWakeTime) ;

DLOG("-AppleFan: :doUpdate\n");
}

/KK e e e A A A A A A A A A A e e e e e HHAA A A A A A e e e e HHH A A A A A A A A e e e e e A KA A A A A A A e e KA AAAK
Routines which take a fan speed as input and program the ADM1030 to run at the

desired speed. Some mnasty tricks are in this code, but it is pretty well

encapsulated and explained in comments. ..

The routines are setFanSpeed and setADM1030SpeedMagically (lots of comments in
the latter for obutious reasons...)
SRR A HHHHAAAAA A A A KA AAAAAAA A A AAAAAA A H KKK AAAAAAA KKK KKK KK KKK f
void AppleFan::setFanSpeed(UInt8 speed, SIntl16 cpu_temp, bool first)
{
UInt8 desiredSpeed;
SInt16 rmt_temp;
AbsoluteTime ticksPassed;
UInt64 nsecPassed;

if (!getRemoteTemp (&rmt_temp))
{
I0Log("AppleFan: :setFanSpeed FATAL ERROR FETCHING REMOTE CHANNEL TEMP!!!\n");
restoreADM1030State (&fSavedRegs) ;
terminate();
return;

}

if (first)
{

// If this is the first run, don't apply any of the hysteresis mechantisms,
// just program the chip with the speed that was produced from the table
// lookup
DLOG("@AppleFan: :setFanSpeed initial speed is %u\n", speed);
setADM1030SpeedMagically(speed, rmt_temp);
clock_get_uptime(&fLastTransition);

}
else
{
if (speed == fLastFanSpeed)
{
if (rmt_temp != fLastRmtTemp)

{
// need to update the remote temp limit register
DLOG("@AppleFan: :setFanSpeed environmental update\n");
setADM1030SpeedMagically(speed, rmt_temp) ;

cs4414 Class 16: AppleFanning 6

return;

b
DLOG("@AppleFan: :setFanSpeed no update needed\n");
else

// calculate nanoseconds since last speed change
clock_get_uptime (&ticksPassed) ;

SUB_ABSOLUTETIME (&ticksPassed, &fLastTransition);
absolutetime_to_nanoseconds(ticksPassed, &nsecPassed);

if (speed < fLastFanSpeed)
{
// Hysteresis mechantsm - don't turn off the fan unless we've reached
// the hysterestis temp
if (speed == kDutyCycleOff && fLastFanSpeed == kDutyCycle07)

DLOG("@AppleFan: :setFanSpeed hysteresis check cpu_temp 0x%04x fHysteresisTemp %04x\n",
cpu_temp, fHysteresisTemp) ;

if (cpu_temp > fHysteresisTemp)
{
DLOG("@AppleFan: :setFanSpeed hysteresis active\n");

// do an environmental update if needed
if (rmt_temp != fLastRmtTemp)
setADM1030SpeedMagicall}

else if (speed > fLastFanSpeed)

DLOG("@AppleFan: :setFanSpeed upward check nsecPassed 0x%11X fSpeedupDelay 0x%11X\n",
nsecPassed, fSpeedupDelay);

// apply upward hysteresis

if (nsecPassed > fSpeedupDelay)
{
desiredSpeed = fLastFanSpeed + 1;
DLOG("@AppleFan: :setFanSpeed speedup to %u\n", desiredSpeed);
setADM1030SpeedMagically(desiredSpeed, rmt_temp);
clock_get_uptime (&fLastTransition);

else
{
DLOG("@AppleFan: :setFanSpeed speedup delay active\n");

// do an environmental update if needed
if (rmt_temp != fLastRmtTemp)
setADM1030SpeedMagically(fLastFanSpeed, rmt_temp);
}
}
else { /* not reached */ }
}

cs4414 Class 16: AppleFanning

o

void AppleFan::setADM1030SpeedMagically(UInt8 desiredSpeed, SInt16 rmt_temp)

{

UInt8 TminTrange, speed;

// shift rmt_temp(14:10) into TminTrange(7:3)
TminTrange = (UInt8) (rmt_temp >> 7);

TminTrange &= ~kTrangeMask;// clear out the 3 LSBs
TminTrange |= 0x7;// T range = highest possible

N
*

setFanSpeed() calculates a speed between 0z0 and OzF and passes it
into this routine (in the variable named "speed"). setFanSpeed

is responsible for setting the remote T_min/T_range and the speed
config register to make the PWM match the requested speed.

If we want the PWM to be completely inactive, we have to set
Tmin ABOVE the current remote temp. We set the speed config
register to zero in this case.

For other PWM walues, we program ITmin to a value just below the
current remote temp. This will instruct the ADM1030 to operate
the PWM at a speed just above whatever speed is programmed into
the speed config register (which, in automatic control mode,
sets the minimum speed at which the fan rTuns when the current
remote temp exceeds Tmin). Then, we program the speed config
register with speed - 1 ; that 7s, one less than the value that
was passed in by doUpdate(). It may seem less than intuitive
to program the speed config register with 0 when we want speed
1, just remember that the difference is made by Tmin —— is the
fan operating below the linear range (PWM completely inactive),
or just inside the linear range (PWM active)?

¥ X X X X X X X X X X X X ¥ ¥ ¥ ¥ x % X %

*/
// The first "if" clause handles two cases:
/7
// 1. The fan is already set below the linear range. This is
/7 when speed=0 and fLastFanSpeed=0. We program Tmin 8 degrees
// above rmt_temp, and preserve the speed config reg at O.
/7
// 2. The fan ts currently in the linear range, but we are about
/7 to shift below the linear range and shut off PWM entirely.
/7 This is denoted by speed=0 and fLastFanSpeed=1.
if (desiredSpeed == 0)

{

// Transition from 1 to O takes fan out of linear range
TminTrange += 0x10;// raise Tmin above current rmt_temp
speed = desiredSpeed;
fLastFanSpeed = desiredSpeed;

b
// Put the hw control loop into the linear range

cs4414 Class 16: AppleFanning 8

else

{
TminTrange -= 0x08;
speed = desiredSpeed - 1;
flastFanSpeed = desiredSpeed;
X

// Recored the rmt_temp at the time of this update
flastRmtTemp = rmt_temp;

#ifdef APPLEFAN_DEBUG

char debug[16];

temp2str (rmt_temp, debug) ;
#endif

DLOG("@AppleFan: : setADM1030SpeedMagically speed=%u rmt_temp=%x (%sC) TminTrange=%x\n",
speed, rmt_temp, debug, TminTrange) ;

if (1doI2C0Open())

{
I0Log("AppleFan failed to open bus for setting fan speed\n");
return;

}

if (!doI2CWrite(kRmtTminTrange, &TminTrange, 1))
{
doI2CClose();
I0Log("AppleFan failed to write to T_min/T_range register!\n");
return;

3

if (!doI2CWrite(kSpeedCfgReg, &speed, 1))
{
doI2CClose();
I0Log("AppleFan failed to write to fan speed register\n");
return;

}

doI2CClose();

David Evans Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://www.cs.virginia.edu/evans/cs4414

http://www.cs.virginia.edu/evans/cs4414

	Action Items
	Project
	AppleFan

