cs4414 Handout – 8 April 2014

Dijkstra’s Mutual Exclusion Problem:

1. [bookmark: _GoBack]Only one thread may be in the critical section at any time.
2. Each must eventually be able to enter its critical section.
3. Must be symmetrical (all run same program).
4. Cannot make any assumptions about speed of threads.

“We beg the challenged reader to stop here for a while, and have a try, for this seems the only way to get a feeling for the tricky consequences of the fact that each computer can only request one one-way message at a time. And only this will make the reader realize to what extent this problem is far from trivial.”








Initialization
b[1:N] = [true, true, …]
c[1:N] = [true, true, …]
k = ?

Program for Processor i  
   loop {         
         b[i] := false
L1:	if k != i 
               c[i] := true
    	      if b[k]
        	         k := i
                  goto L1
         else:
               c[i] := false
               for j in [1, …, N]:
                    if j != i and not c[j]:
                         goto L1  
               critical section;   
               c[i] := true
               b[i] := true    
    }






Lamport’s Solution
[image: Screen Shot 2014-04-08 at 9.58.11 AM.png]
image1.png
begin integer j;
L1: choosing [i] := 1;
numberli] := 1 + maximum (number[1], . . ., number[N));
choosingli] := 0,
forj = 1 step 1 until N do
begin
L2:if choosinglj] # O then goto L2;
L3:if number(j] # 0and (number |j], j) < (number|i),
i) then goto L3;
end;
critical section;
number(i] := 0;
noncritical section;
goto L1;
end





—————
[ ——

1. Onyanethread may be i the i section t ay e,
2 Each st cvenullybe bl o e s il ecion
5 Mustbesynmetrical 0l un s program)

& Cannot make anySssumprions sbout peed o threads.

W the g et o whte v o h s
R ey s e et o
oy et ey g £ At s s e e e
et s o ol



