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Abstract

This paper evaluates the design and implementation of Omni-
ware: a safe, efficient, and language-independent system for
executing mobile program modules. Previous approaches to
implementing mobile code rely on either language semantics
or abstract machine interpretation to enforce safety. In the
former case, the mobile code system sacrifices universality
to gain safety by dictating a particular source language or
type system. In the latter case, the mobile code system sac-
rifices performance to gain safety through abstract machine
interpretation.

Omniware uses software fault isolation, a technology de-
veloped to provide safe extension code for databases and
operating systems, to achieve a unique combination of
language-independence and excellent performance. Soft-
ware fault isolation uses only the semantics of the underlying
processor to determine whether a mobile code module can
corrupt its execution environment. This separation of pro-
gramming language implementation from program module
safety enables our mobile code system to use a radically
simplified virtual machine as its basis for portability. We
measured the performance of Omniware using a suite of four
SPEC92 programs on the Pentium, PowerPC, Mips, and Sparc
processor architectures. Including the overhead for enforcing
safety on all four processors, OmniVM executed the bench-
mark programs within 21% as fast as the optimized, unsafe
code produced by the vendor-supplied compiler.
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1 Introduction

The term mobile code describes any program that can be
shipped unchanged to a heterogeneous collection of proces-
sors and executed with identical semantics on each processor.
Currently, the most visible computer application requiring
mobile code is executable content for electronic documents.
While documents containing executable content have been
around for at least two decades [46, 13], the combination
of electronic documents with widely adopted network proto-
cols [5] on the Internet requires mobile executable document
content.

Because mobile programs are often untrusted, safety is an
essential feature of any mobile code system. The system
must maintain precise control over a mobile code module’s
access to the resources of its execution environment. We call
the computer application that loads a mobile code module the
host. To achieve safety, it is necessary for the mobile code
mechanism to prevent a faulty or malicious module from
corrupting host data or calling unauthorized host functions.

Our mobile code system, Omniware [28], uses software
fault isolation (SFI) to enforce safety [42]. SFI enables mu-
tually distrustful program modules to safely share an address
space. Table 1 summarizes the Omniware performance for
four SPEC92 programs; Section 4 provides detailed perfor-
mance results. To support universal, efficient mobile code,
we generalize the notion of a virtual machine to what we call a
software-defined computer architecture. A software-defined
computer architecture (SDCA) implements a set of virtual
instructions, virtual memory management, and a virtual ex-
ception model. Our SDCA, the Omniware virtual machine
(OmniVM), provides a segmented address space, enforces
host-imposed permissions on access to this address space, and
delivers an access violation exception to the module when-
ever it makes an unauthorized attempt to access a memory
segment. Section 4 quantifies the overhead of using Om-
niVM to enforce write and execute protections on multi-page
segments. Software fault isolation can also support efficient
read protection and fine-grained access protection [42, 43].



Execution time relative to native

program || Mips | Sparc | PPC | x86
li 1.10 1.05 | 1.18 1.11
compress 1.04 102 | 1.23 1.02
alvinn 1.20 1.07 | 1.08 1.25
eqntott 1.20 1.04 | 1.35 1.06

| average || 1.14 | 105] 121 ] 1.11]

Table 1: Execution time of translated code with SFI, relative
to native code.

Omniware does not yet incorporate these capabilities' .

SFI uses only the semantics of the underlying processor
to determine whether a mobile code module can corrupt the
hostexecution environment. SFI checks each unsafe memory
access or indirect branch instruction at runtime to ensure that
it does not violate access restrictions. The current Omniware
system inlines these checks when a mobile program is loaded
into the host address space and translated from OmniVM to
native code (load time). This separation of programming lan-
guage implementation from program module safety enables
Omniware to use a radically simplified (RISC-like) virtual
machine as its basis for portability [33].

This design choice has two advantages. First, it simplifies
the implementation of compilers to OmniVM and transla-
tors from OmniVM. For example, we retargeted both gcc
[17] and lcc [16] to OmniVM within two months. Sec-
ond, the use of simple instructions gives the source language
compiler more opportunity for optimization because more
aspects (such as data layout) of the final code are defined by
the compiler. Hence, a compiler can perform a great deal
of machine-independent optimization (such as register allo-
cation, constant folding, constant propagation, and strength
reduction [2]) prior to module load time. This is important
in many mobile code contexts such as Web pages where load
time, and hence optimization during loading, must be mini-
mized. Section 4 demonstrates quantitatively that compilers
can substantially optimize OmniVM modules prior to load
time.

The remainder of this paper is organized as follows. Sec-
tion 2 describes in more detail the types of computer appli-
cations that can benefit from mobile code. Section 3 gives
an overview of OmniVM and the tradeoffs in its design.
Section 4 presents a detailed performance analysis of our
system. We quantify the overheads introduced by translation
and software fault isolation, and measure the effectiveness of
optimizations performed by the translator. Section 5 com-
pares our approach to mobile code with other mobile code
systems and related projects.

I'This document describes Colusa Omniware Beta version 1.68; later
versions may have different features. This document does not provide an
express or implied warranty for any Colusa product or license to any Colusa
intellectual property.

2 Background

In the software industry, the need for mobile code is increas-
ingly widespread. For example, distributed database systems
[37] and file systems [30] require safe function shipping to
achieve scalability. An e-mail client can ship a mail-filtering
function to a server to reduce server bandwidth requirements.
A file system server can ship a decompression function to a
client to offload its processing.

Moreover, multi-platform operating systems, such as Mi-
crosoft Windows NT [31], when combined with network
file systems, require either cumbersome management of
processor-specific binaries or some form of mobile code.
Similarly, distributed object-oriented database systems [4]
use method invocation as a basis for data queries. In the
absence of mobile code, these systems must manage het-
erogeneous binaries for each dynamically created data class.
Because of these requirements, several languages for pro-
gramming distributed systems, such as Orca [3] and Emerald
[36], incorporate mobile code as a fundamental programming
construct.

The mobile code systems introduced to date have used
one of two methods for enforcing safe execution: abstract
machine interpretation or language semantics. Abstract ma-
chine interpreters [12] trade performance for safety. A mo-
bile code system based around an abstract machine consists
of a compiler for some number of source languages cou-
pled with an interpreter for the abstract machine. The inter-
preter manages the mapping between virtual resources used
by the abstract machine and the physical resources of the
host, preventing unauthorized access by checking that only
valid mappings are used. This mechanism is effective and
language-independent, but inherently slow.

A mobile code system can use language semantics to en-
force safety by guaranteeing that a program can’t affect re-
sources that it can’t name [38, 9, 40]. Though rare in current
practice, it is possible to achieve good performance using this
approach if the compiler intermediate representation retains
type information [23, 39]. However, this approach works
through restriction. For example, a strongly-typed interme-
diate language might promise through the type system that
integer arithmetic will not be performed on a particular value,
because the value has a pointer type. A virtual machine im-
plementing this type system can check whether this promise
is kept and reject programs that perform type-violating oper-
ations [18].

Hence, a mobile code system that uses language semantics
to enforce safety sacrifices universality. This has two draw-
backs. First, type-based mobile code systems can’t imple-
ment type-unsafe languages such as C,C++, Pascal, Common
Lisp, and Fortran. In the software industry, the vast majority
of re-usable components, software libraries, and programmer
expertise is in these languages.

Second, and most important, a mobile code infrastructure



based on a particular type system imposes barriers to pro-
gramming language innovation and experimentation. If a
programmer invents a better type system, she can’t simply
deploy on the Internet a language embodying this type sys-
tem, because a type-based infrastructure can only guarantee
safety with respect to its existing type system.

3 The design of OmniVM

OmniVM is a RISC-based design that defines an instruction
set, a register file organization, data formats, an exception
model, and a segmented virtual memory model. The design
of OmniVM reflects three goals:

1. Portability. OmniVM must be retargetable to a variety
of target architectures. Moreover, OmniVM must be
powerful and flexible enough to support the safe execu-
tion of any source language.

2. Efficiency. Translation of OmniVM must be fast, since
in many applications of mobile code, translation speed
is an important factor. Thus, a translator should not
require expensive transformations. Such a translation
scheme must still yield high performance object code
on all target architectures.

3. Ease of code generation. OmniVM must be a simple
target for a high-level language compiler.

3.1 RISC-based design

Portability across source languages is achieved with an ar-
chitecture that resembles a typical RISC architecture. The
OmniVM instruction set is rich enough to support any source
language. OmniVM’s load/store instruction set also makes it
a simple code generator target.

The OmniVM architecture is designed to map directly
onto a variety of target processors: each OmniVM instruc-
tion maps to one or more target machine instructions and
each OmniVM register maps to a target machine register
or memory location in the runtime environment. Since the
majority of instructions map to a single target machine in-
struction, most of the generated object code has already been
exposed to optimizations in the compiler. By delegating the
bulk of optimizations to the compiler, the translator is left
with the task of straightforward code generation. Hence, our
system achieves efficiency in both the translation time and
performance of generated target code.

The optimization opportunities that remain after transla-
tion are mainly machine-dependent optimizations. The mea-
surements presented in Section 4 show that the bulk of speed-
up opportunities are obtained by the machine-independent
optmization performed by the compiler. These measure-
ments shows that the design of our virtual machine instruction

Number of | Average
Registers | Overhead

8 1.11

10 1.11

12 1.08
14 1.06
16 1.05

18 1.05
20 1.05
26 1.05

Table 2: Average execution time of mobile code relative
to native Sparc code generated by cc for various OmniVM
register file sizes.

set effectively exposes target machine resources to compiler
optimizations.

Using a RISC-like virtual machine also yields competi-
tive x86 code. A number of superscalar implementations
of the x86 architecture provide a RISC core instruction set.
For instance, Intel’s Pentium [10] and Pentium Pro [20],
AMD’s K5 [35], and NexGen’s Nx686 [21] processors are
superscalar implementations of the x86 architecture, that can
concurrently dispatch only RISC-like instructions [25]. An
Intel application note describing instruction selection and
scheduling for the Pentium processor, advises against se-
lecting complex instructions and suggests using a load/store
model of instruction selection [24].

3.2 Register file organization

The OmniVM has 16 integer registers and 16 floating-point
registers. On the RISC targets, the OmniVM registers are
mapped directly onto physical registers, while on the x86,
some registers are mapped to memory locations. Since the
newer implementations of the x86 architecture are optimized
to efficiently execute instructions with memory operands, this
strategy works well (see the performance measurements in
Section 4). Table 2 shows that using fewer than 16 registers
penalizes performance on the Sparc.

On RISC targets, the runtime system reserves some regis-
ters to efficiently implement SFI [42], to store environment
information, and to preserve compatibility with the native
application binary interface. On processors such as the Pow-
erPC or Sparc, we could use as many as 23 OmniVM regis-
ters. However, Table 2 shows that Sparc performance does
not improve significantly with the addition of more than 16
registers to the OmniVM.

3.3 Data formats

OmniVM defines the size of basic data types and supports
integer types of byte, halfword, and word (8, 16, and 32



bits) and IEEE single- and double-precision floating-point
types. We anticipate supporting 64 bit integer types and 64
bit addressing in future versions.

By defining the sizes of primitive data types, OmniVM
enables the compiler to define the layout of aggregate data
types and generate explicit address arithmetic code. This
is important, because many optimizations such as common
subexpression elimination, code motion, and strength reduc-
tion within loops, are effective on address arithmetic code.

OmniVM’s basic data types are endian-neutral; the ad-
dressing of bytes within halfwords or words,and of halfwords
within words is not defined. OmniVM provides data manipu-
lation instructions to assure portability across machines with
different byte orderings; these instructions are mapped to
endian-dependent extract and insert instruction sequences of
the target machine.

3.4 RISC instruction set enhancements

OmniVM generalizes sizes of address offsets and branch
architecture. OmniVM provides memory access instructions
with 32 bit immediate offsets. This choice guarantees that
when an OmniVM translator encounters a memory access
instruction, it has all the information necessary to generate
good code for that instruction. On a CISC machine such as the
x86, a single instruction will suffice. On a RISC machine, the
translator typically generates one additional instruction for
address calculation. Section 4 shows the overhead introduced
through using large address offsets and how, by using a global
pointer [11], we can eliminate the bulk of this overhead.

In contrast, if OmniVM were to restrict the size of address
offsets, the compiler would generate additional address cal-
culation instructions; further, an optimizing compiler might
move these instructions across basic blocks. Hence, an x86
translator would be required to perform local or even global
instruction combining to reconstruct the simplest instruction
sequence for a given memory access.

OmniVM has general compare-and-branch instructions
that branch on the result of a comparison between two reg-
isters or between a single register and an immediate value.
These branch instructions are necessary for production of
good code across a wide variety of branch models; for ex-
ample, if compare results were placed in general purpose
registers, it would be difficult to implement efficient condi-
tional branches on architectures that use condition codes.

4 Evaluation

To evaluate the performance of mobile code based on Om-
niVM, we used gcc (version 2.4.5) to generate OmniVM
instructions from a set of benchmark programs written in the
C programming language; we used the OmniVM assembler
and linker to generate OmniVM executable files for these

programs. The executables generated by the linker are mo-
bile code modules that are translated and executed by a host
program that incorporates the runtime environment. The
Omniware runtime environment includes both an OmniVM
translator for the given target machine, and a set of library
functions, such as memory management, threads, synchro-
nization, and graphics that the host program can safely export
to dynamically loaded Omniware modules.

We evaluated OmniVM translators and runtime environ-
ments on four different platforms: a Mips R4400 based SGI
Indigo-2 machine running Irix 5.2, a PowerPC 601 based
IBM RS/6000 running AIX version 3, a Sparc based SPARC-
Station 10 running Solaris 2.4, and a 90 MHz Intel Pentium
based “Precision Pentium” machine running Microsoft Win-
dows NT version 3.5.

Our translators include several optimizations. We have
implemented local instruction scheduling in our Mips and
PowerPC translators based on the algorithm described in
[45]. We implement a global pointer in our Sparc trans-
lator and fill branch delay slots. On the x86, we perform
only floating-point pipeline scheduling and peephole opti-
mization. In addition, we have implemented instrumentation
hooks in our translators so that we can gather information on
the dynamic behavior of our benchmarks, such as instruction
mixes. For the measurements in this section, no interproce-
dural optimizations were used.

We used four C programs from the SPEC92 suite for our
evaluation: 1i, compress, alvinn and egntott. The
reference input files provided in the SPEC92 distribution were
used as input data. We compiled these programs using both
the vendor-supplied cc compiler and gcc (version 2.5.8 on
Mips, Sparc and x86, version 2.6.3 on the PowerPC). For
all compilers, we used the highest available level of intra-
procedural global optimizations.

Our evaluation is organized as follows. In Section 4.1
we compare the performance of mobile code based on Om-
niVM with the performance of native code. In Section 4.2
we measure the performance improvements from performing
optimizations in the translator. In Section 4.3 we measure
the expansion in number of instructions due to differences
between the OmniVM and host instruction sets, and due to
software fault isolation.

4.1 Performance of mobile code

We compare the execution time of a dynamically loaded
OmniVM executable with the execution time of object code
generated by the native compiler. Tables 3 and 4 show execu-
tion times of translated OmniVM (both with and without SFT)
relative to the execution times of native code generated by
the host cc and gcc compilers. In the case of the three RISC
architectures, the performance of safe mobile code based on
OmniVM is virtually indistinguishable from the performance
of native code generated by gcc. When compared to native



Execution time relative to native

program Mips Sparc PPC x86
SFI [ no SFI || SFI | noSFI || SFI | no SFI || SFI | no SFI
li | 1.10 091 || 1.05 1.02 || 1.18 1.08 || 1.11 1.10
compress || 1.04 096 || 1.02 101 || 1.23 1.18 || 1.02 1.02
alvinn || 1.20 1.09 || 1.07 1.03 || 1.08 097 || 1.25 1.22
eqntott || 1.20 1.18 || 1.04 0.99 || 1.35 1.35 || 1.06 1.04
| average [[ 1.14] 103 105] 102 [ 121] 114111 [ 1.10]

Table 3: Execution time of mobile code relative to native code generated by cc.

Execution time relative to native

program Mips Sparc PPC x86
SFI | no SFI || SFI | noSFI || SFI [ no SFI || SFI [ no SFI
li || 1.11 092 || 1.05 1.01 || 1.04 0.94 || 1.09 1.09
compress || 0.78 0.72 || 1.02 1.01 || 1.08 1.13 || 1.01 1.01
alvinn || 1.12 1.01 || 1.08 1.02 || 1.36 1.21 || 1.09 1.06
eqntott || 1.04 1.02 || 1.03 1.01 || 0.66 0.66 || 1.05 1.03
| average || 1.01 | 0.92 || 1.05 | 1.02 || 1.03 | 0.98 || 1.06 | 1.05 |

Table 4: Execution time of mobile code relative to native code generated by gcc.

Execution time relative to native

program Mips Sparc PPC x86
SFI | no SFI || SFI [ noSFI || SFI | no SFI || SFI | no SFI
li || 1.18 1.06 || 1.11 1.07 || 1.35 1.14 || 1.18 1.15
compress || 1.04 084 || 1.18 1.16 || 1.28 1.23 || 1.09 1.07
alvinn || 1.37 1.20 || 1.21 1.17 || 1.32 1.04 || 1.79 1.71
eqntott || 1.08 1.06 || 1.24 121 || 1.35 135 | 1.22 1.16
| average [[ 1.17] 104121 ] 115]133] 119132 1.27]

Table 5: Execution time of mobile code without translator optimizations, relative to native code generated by cc.



program || Mips | Sparc | PPC | x86 |
li|| 098 | 1.01 | 1.14 | 1.13
compress 1.33 102 | 1.08 | 1.05
alvinn 1.07 101 | 0.80 | 1.38
eqntott || 1.16 | 1.01 | 2.04 | 1.06

101 [ 127 ] 1.16 ]

| average || 1.14 |

Table 6: Execution time of native code generated by gcc
relative to native code generated by cc.

code generated by the cc compilers, mobile code is 10 - 20%
slower.

There are four factors that contribute to performance dif-
ferences between mobile and native cc generated code: (i)
overheads due to software fault isolation, (ii) differences in
the OmniVM and target instruction sets, (iii) better global
optimizations in the cc compilers, and (iv) better machine-
dependent optimizations in the cc compilers (e.g., instruc-
tion selection and scheduling). Because of the effects of
cache misses and pipeline interlocks, it is difficult to quantify
the contribution of each of these factors to execution times
without simulating the pipeline and memory system of each
architecture.

In Section 4.3 we quantify the effects of (i) and (ii) in terms
of instruction counts and discuss techniques to alleviate these
overheads. In the case of (iii), retargeting the cc compilers
to OmniVM would result in faster mobile code, since mobile
code would also benefit from reductions in path length due
to better global optimizations.

We can measure the combined effects of (iii) and (iv) by
comparing the native cc and gcc compilers. Table 6 shows
the performance difference between native code compiled
with gcc versus native code generated by cc. In general,
the quality of code generated by the native cc compilers is
better than gcc. The difference is greatest on the PowerPC
(27%). We believe this is due mainly to better code selec-
tion and aggressive instruction scheduling performed by the
x1lc compiler. The PowerPC has a few features that are
unusually challenging for code generators, specifically, auto-
update addressing modes, branch-and-decrement instructions
and multiple condition registers. Effective use of these fea-
tures can result in substantial speed-ups [22], especially when
the compiler performs global instruction scheduling [6].

We are currently enhancing our translators with global in-
struction scheduling and a framework for machine-dependent
peephole optimizations. We expect these improvements to
bring the performance of translated code on the PowerPC in
line with that of the other two RISC processors. We also
expect that these optimizations will improve performance
of translated code on the x86, especially for pipelined im-
plementations of the architecture, because Microsoft Visual
C++ performs a number of complex peephole optimizations
and instruction scheduling decisions for the Pentium that lead

to its 16% performance difference from gcc.

Tables 3 and 4 also show the execution time overhead in-
troduced by SFI. On all platforms, there is a performance
penalty of approximately 10%. Other reports have investi-
gated the effect of applying compiler optimizations to soft-
ware fault isolation [42]. Based on these studies, we expect
that Omniware’s software fault isolation overhead will be cut
to approximately 5% through these optimizations.

4.2 Benefits from translator optimizations

Table 5 shows that simple local instruction scheduling can
substantially improve native code generated by OmniVM
translators. This is encouraging, since mobile code appli-
cations will often require fast load times, making the use of
global optimizations unattractive. This table shows execution
times of mobile code relative to the execution times of native
code generated by cc. Comparing Table 5 with Table 3 we
see that the Mips, PowerPC, and x86 benefit greatly from in-
struction scheduling; we assume that this is because all three
architectures offer machine-level parallelism that the instruc-
tion scheduler can exploit (the R4400 is superpipelined while
the PowerPC 601 is superscalar). For example, the measure-
ments for ALVINN on the x86 show the benefits of floating-
point pipeline scheduling in our translator for the Pentium
processor.

More importantly, instruction scheduling improves the per-
formance of code translated with SFI, more than it improves
the performance of code that has been translated without SFI.
This is because instruction scheduling is able to hide some
of the software fault isolation overhead within pipeline in-
terlock cycles. Hence, the overhead of performing software
fault isolation is alleviated by instruction scheduling. It is
also interesting to observe from comparing Tables 5 and 3,
that translator optimizations make up for some of the over-
head introduced by SFI.

Although we do not perform instruction scheduling for
the Sparc, performance on the Sparc is the most competitive
with the native cc compiler. Sparc performance benefits
from using a global data pointer (even though it has only a 13
bit offset for immediates) as well as using annulled branches.
Since symbols are resolved during translation, our system
does not pay the usual dynamic linking cost of setting and
restoring a global pointer on each function call. We expect
better performance from our Mips and PowerPC translators
once we implement a global pointer in these translators; the
numbers presented in Section 4.3 support this conclusion.

4.3 Instruction expansion

The charts in Figure 1 give a detailed view of the expansion
introduced during translation from OmniVM instructions to
native instructions, for the Mips and PowerPC architectures.
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Figure 1: Expansion introduced by translation.

If all OmniVM instructions translated to a single native in-
struction, then there would be no expansion during transla-
tion. However, there are several situations where additional
instructions are introduced during translation, and the charts
in Figure 1 show the dynamic counts of these additional in-
structions relative to the number of OmniVM instructions
executed:

¢ OmniVM includes addressing modes that translate to
more than one instruction on these architectures. Ex-
pansion due to these additional instructions is labeled
“addr” in the charts.

¢ OmniVM includes powerful conditional branches that
sometimes translate to a compare and a branch on these
architectures. Expansion due to these additional com-
pares is labeled “cmp” in the charts.

¢ OmniVM has 32 bit immediates and thus additional
instructions may be necessary to load an address or
an immediate into a register when this immediate does
not fit into the target architecture’s instruction format.
Expansion due to these additional instructions is labeled
“ldi” in the charts.

¢ On the Mips, branches have a delay slot that must be
filled. Expansion due to branch delay slots containing
nops are labeled “bnop” in the charts.

e Additional instructions are inserted to enforce software
fault isolation for unsafe store instructions. Expansion
due to these additional instructions is labeled “sfi” in the
charts.

These charts show how differences in the target architectures
result in different overheads:

o The PowerPC executes substantially more compare in-
structions than the Mips. The reason for this is that
most conditional branches in these programs involve
a comparison against zero, which map to a single in-
struction on the Mips. The PowerPC must perform an

explicit comparison for all conditional branches. Be-
low, we discuss a few optimizations that can reduce this
overhead on the PowerPC.

o The Mips has slightly more “ldi” overhead in egqntott
and compress. This is because these programs have
conditional branches involving comparisons against a
constant. On the PowerPC, these constants fit into the
immediate form of the compare instruction. The Mips
has only a single compare with immediate instruction;
if the branch condition does not match this compare
instruction, the immediate must be first loaded into a
register.

e The PowerPC executes fewer SFI instructions. The
reason for this is that the PowerPC has an indexed ad-
dressing mode (i.e., register plus register) that allows
the PowerPC SFI check sequence to be shorter than the
check sequence for the Mips.

e Both architectures execute an equally significant num-
ber of addressing mode overhead instructionsin 1i and
compress. The OmniVM indexed addressing mode
maps one-to-one on the PowerPC but requires an addi-
tional add instruction on the Mips. Since there is no
difference in the addressing mode expansion between
these two architectures, indexed mode addressing does
not seem to be important for these programs. Both
architectures execute many addressing mode overhead
instructions that can be eliminated with a global pointer.

o Even though the scheduler attempts to fill branch delay
slots on the Mips, there are still many branch nops that
remain.

4.4 Discussion

The performance measurements presented in this section
demonstrate that Omniware can achieve excellent mobile
code performance. Omniware’s overhead of only 10-20%



makes it an order of magnitude faster than any other uni-
versal mobile code system, because other universal sys-
tems must rely on abstract machine interpretation to enforce
safety [12, 32]. For many applications of mobile code, such
as executable content for Internet documents, our current
performance is sufficient. However, we plan to add the capa-
bility for aggressive optimization to our translators, includ-
ing global optimizations, link-level (interprocedural) opti-
mizations, and chip-specific transformations such as global
instruction scheduling, instruction combination and the or-
ganization of code and data to fit cache capacity and layout
[27]. By adding these capabilities, we hope to make the
Omniware system suitable for tasks such as general software
distribution. In performing these optimizations, OmniVM
translators have two advantages over typical compilers: not
only does a translator have complete inter-procedural infor-
mation (i.e., across module boundaries), it has exact knowl-
edge of the target machine. Typically, compilers target an
entire architecture family, not a particular processor imple-
mentation. Several studies suggest that we can significantly
improve performance using this information [27, 44, 8].

In addition, our results suggest several simple steps to-
wards this goal. First, implementing a global pointer can
significantly improve performance. The performance im-
provement resulting from implementing a global pointer on
the Sparc confirms this assertion. Second, the PowerPC is
paying a significant overhead due to extra compare instruc-
tions, especially since these compare instructions have multi-
cycle latencies and must be scheduled. Some comparisons
against zero can be eliminated on the PowerPC by folding the
setting of the condition codes into a prior arithmetic instruc-
tion. Moreover, the PowerPC branch and count instruction
can fold an induction variable decrement, test against zero
and branch instruction into a single instruction. Finally, SFI
forms the foundation of our approach, but incurs an execu-
tion time overhead of approximately 10%. The overhead of
SFI optimizations can be reduced using standard compiler
techniques such as loop invariant code motion, as described
in [42]. We have not implemented SFI optimizations and
expect optimization will cut this overhead in half.

S Related projects

Several projects have employed virtual machine architectures
with low-level instruction sets that resemble the OmniVM
instruction set. Designed for portable optimization rather
than mobile code, Mahler [45] defines a virtual machine that
abstracts over the details of several different Titan processor
implementations. OmniVM differs from Mabhler in the far
wider range of architectures it supports, and the requirement
for safe execution. Similarly, the Taos operating system
[34] defines as its compiler target the Taos Virtual Processor,
which, like Mahler, is an attempt to support multi-platform

optimization.

Binary translation systems [1] address the problem of mi-
grating existing native code from one platform to another. A
similar approach is the idea of “fat binaries,” where the com-
piler generates an object file containing multiple text sections
— one for each of the target architectures. Neither of these
methods address the issue of safety.

The ANDF [29] project is a recent attempt to standardize
a universal intermediate language for software distribution
[14]. ANDF’s intermediate representation comprises typed
expression trees. This representation is at a higher level than
the OmniVM, and more work is required to translate it to
native code. Thus, this representation is less suitable for
applications where speed of translation is important, and will
not benefit as much from compiler optimizations as OmniVM
does. The OMI project [15] uses a similar approach.

Telescript [26] and Java [19] are two mobile code systems
that achieve portability and safety by compiling to a machine-
independent intermediate representation. Telescript enforces
safety in its interpreter. Java depends on a type system for
mobile code safety. Java’s intermediate representation is
tailored for fast interpretation by a stack machine [18], and,
because it defers decisions such as data layout, requires more
work than OmniVM to translate into efficient machine code.
No performance evaluations have been released for Java, so
it is difficult to evaluate the performance of the Java compiler
or interpreter.

Some mobile code systems rely entirely on interpretation
of source code at the host. Many scripting languages are
in this category, including safe variants of Perl, Tcl [7] and
Python [41]. These language-specific mobile code systems
are useful for certain unstructured tasks such as parsing user
input, but they require software distribution in source form
and their performance is limited. A universal mobile code
substrate such as Omniware provides a host program such as
an Internet browser the capability for running any of these
systems, without requiring that the host program statically
incorporate a wide variety of interpreters. To provide a new
interpreted language on the Internet, a programmer can write
an interpreter in C or C++ and make it available as an Omni-
ware module.

6 Conclusion

This paper described a mobile code system and its imple-
mentations on the Pentium, PowerPC, Mips, and Sparc pro-
cessors. Including the overhead for enforcing safety, our
current system can execute real C programs at execution
speeds within 21% of the unsafe optimized code produced
by the vendor-supplied compiler. Our evaluations suggest
optimizations that can further improve performance. To our
knowledge, Omniware is the fastest system for mobile code
to date, and the first to efficiently implement safe, mobile



C JAVA
source

Source program source

Compiler

MIPS

Host translator
translator

MIPS
object

Loaded native
executable

SPARC
translator

SPARC
object

ML
source

Fortran
source

Fortran
compiler

Mobile code

PowerPC
translator

translator

PowerPC
object

x86
object

Figure 2: A universal mobile code substrate.

code in a language-independent way. Hence, as illustrated
in Figure 2, we consider Omniware to be the first practical,
universal substrate for mobile code.
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