
From L3 to seL4
What Have We Learnt in 20 Years of L4 Microkernels?

Kevin Elphinstone and Gernot Heiser
NICTA and UNSW, Sydney

{kevin.elphinstone,gernot}@nicta.com.au

Abstract
The L4 microkernel has undergone 20 years of use and evo-
lution. It has an active user and developer community, and
there are commercial versions which are deployed on a large
scale. In this paper we examine the lessons learnt in those 20
years in relation to microkernel design. We revisit the L4 de-
sign papers, re-examine the approaches and conclusions, and
provide insights into the long-term validity, or lack thereof,
of the original design and implementation principles. We fur-
ther examine the design of the seL4 kernel, which has pushed
the L4 model furthest and was the first OS kernel to undergo
a complete formal verification of its implementation. We use
the seL4 design to illustrate how the microkernel has evolved,
and to demonstrate the current state of evolution continues to
possess the traits L4 is known for — performance and mini-
mality.

1. Introduction
Twenty years ago, Liedtke [1993a] demonstrated with his L4
kernel that microkernel IPC could be fast, a factor 10–20
faster than other contemporary microkernels.

Microkernels minimize the functionality that is provided
by the kernel; the kernel provides a set of general mecha-
nisms, while user-mode servers implement the actual oper-
ating system (OS) services [Levin et al. 1975]. User code
obtains a system service by communicating with servers via
an inter-process communication (IPC) mechanism, typically
message passing. Hence, IPC is on the critical path of any
service invocation, and low IPC costs are essential.

By the early ’90s, IPC performance had become the
achilles heel of microkernels: typical costs for a one-way
message was around 100µs, which was too high for building
performant systems, with a resulting trend to move core ser-

[Copyright notice will appear here once ’preprint’ option is removed.]

vices back into the kernel [Condict et al. 1994]. There were
also arguments that high IPC costs were an (inherent?) conse-
quence of the structure of microkernel-based systems [Chen
and Bershad 1993].

In this context, the order-of-magnitude improvement of
IPC costs Liedtke demonstrated was quite remarkable. It was
followed by work discussing the philosophy and mechanisms
of L4 [Liedtke 1995; 1996a], the demonstration of a para-
virtualized Linux on L4 with only a few percent overhead
[Härtig et al. 1997], the deployment of an L4 version on
billions of mobile devices,1 and, finally, the world’s first
functional correctness proof of an OS kernel [Klein et al.
2009].

In this paper we examine the development of L4 over
the last 20 years, Specifically we look at makes modern
L4 kernels tick, and how this relates to Liedtke’s original
design and implementation, and which of his microkernel
“essentials” have passed the test of time. We specifically
examine how the lessons of the past have influenced at the
design of seL4.

2. The L4 Microkernel Family
L4 developed out of an earlier system, called L3, developed
by Liedtke [1993b] in the early 1980s on i386 platforms. L3
was a complete OS with built-in persistence, and it already
featured user-mode drivers, still a characteristic of L4 micro-
kernels. It was commercially deployed in a few thousand in-
stallations (mainly schools and legal practices). Initially, like
all microkernels at the time, L3 suffered from IPC costs of
the order of 100µs.

Liedtke initially used L3 to try out new ideas, and what
he referred to as “L3” in early publications [Liedtke 1993a]
was actually an interim version of a radical re-design. The
name “L4” was first used with the “V2” ABI circulated in the
community from 1995.

In the following we refer to this version as the “origi-
nal L4”. Liedtke implemented it completely in assembler on
i486-based PCs and soon ported it to the Pentium.

1 See Open Kernel Labs press release http://www.ok-labs.
com/releases/release/ok-labs-software-surpasses-milestone-of-1.
5-billion-mobile-device-shipments.

1 2013/4/29

mailto:kevin.elphinstone@nicta.com.au
http://www.ok-labs.com/releases/release/ok-labs-software-surpasses-milestone-of-1.5-billion-mobile-device-shipments
http://www.ok-labs.com/releases/release/ok-labs-software-surpasses-milestone-of-1.5-billion-mobile-device-shipments
http://www.ok-labs.com/releases/release/ok-labs-software-surpasses-milestone-of-1.5-billion-mobile-device-shipments


Name Year Processor MHz Cycles
Original 1993 486 50 250
Original 1997 Pentium 160 121
L4/MIPS 1997 R4700 100 86
L4lpha 1997 21064 433 45
Pistachio 2005 Itanium 1 1,500 36
OKL4 2007 XScale 255 400 151
seL4 2013 ARM11 532 185

Table 1. One-way IPC cost of various L4 kernels.

In the following years, Schönberg at TU Dresden started to
develop an L4 implementation on the 64-bit Alpha processor
(later completed at UNSW), while concurrently Elphinstone
at UNSW did the same for MIPS64 processors. Both kernels
were written from scratch, the Alpha kernel in Alpha PAL
code, while the MIPS kernel had a core implemented in
assembler but implemented longer-running operations, such
as address-space manipulations, in C. Both achieved sub-
microsecond IPC performance [Liedtke et al. 1997a] (see
Table 1). They were the first open-source L4 kernels (both
under GPL), and UNSW’s release of the Alpha kernel was
the first multiprocessor version of L4.

Liedtke kept experimenting with the assembler kernel,
trying schemes that allowed performing intra-address-space
IPC entirely at user level in a few dozen cycles [Liedtke and
Wenske 2001], aimed at fast and transparent forwarding of
requests from server gateway threads to worker threads. He
referred to the experimental ABI as “Version X”.

Around 1997, Hohmuth at Dresden started the implemen-
tation of a new L4 kernel for x86 processors, called Fiasco.
It was the first L4 kernel written (almost) completely in a
high-level language (C++), mostly for software-engineering
reasons; it was also GPLed. Neither portability nor perfor-
mance was an original design goal (although later versions
were were tuned for high performance and ported to ARM).

Fiasco has over the years adapted to a series of changes of
the L4 ABI, including a transition to capability-based access
control (in what’s now known as Fiasco.OC) and is actively
maintained. It was early-on targeted for real-time use and
was, unlike other L4 kernels, fully preemptible [Hohmuth
and Härtig 2001], although later versions reverted to the
mostly un-preemptible design that is characteristic of L4
kernels.

Soon after, Liedtke’s students in Karlsruhe developed,
again from scratch, the first L4 kernel designed to be portable,
called Hazelnut, released in 1999 under GPL. It was imple-
mented completely in C, originally on x86 and soon ported
to ARM. Hazelnut eventually achieved performance compet-
itive with Liedtke’s all-assembler kernel by re-implementing
performance-critical code paths in assembler, so-called “fast
paths”, a technique which was adopted by all other high-
performance L4 kernels.

Until this time, all L4 kernels (other than Version X) im-
plemented essentially the same (V2) ABI, with slight vari-
ants resulting from underlying ISA differences. Based on the
Version X and Hazelnut experience, Liedtke and his students
worked on a new ABI, called V4. It aimed at providing better
hardware abstraction, but also attempted to overcome perfor-
mance limitations which, as experience had show, resulted
from some of the original mechanisms. More on this in Sec-
tion 3.1.

In 2002, after Liedtke’s death, Karlsruhe students Uhlig,
Dannowski, Skoglund and LeVasseur built an implementa-
tion of V4 from scratch, and called it L4Ka::Pistachio (“Pis-
tachio” for short). Released in 2003 under a BSD license,
Pistachio was implemented in C++ and, from the beginning,
designed to be portable as well as high-performance. The ini-
tial implementation was done concurrently on x86 and Pow-
erPC processors, with a port to Itanium commenced soon
afterwords (although the Itanium version was never com-
pleted). NICTA soon after ported Pistachio to Alpha, MIPS
and ARM, and optimised the Itanium IPC path [Gray et al.
2005].

NICTA re-targeted the V4 ABI to resource-constrained
embedded systems, calling the resulting ABI “N1” and the
implementation NICTA::Pistachio-embedded (L4-embedded
for short). Qualcomm adopted L4-embedded as a memory-
protected real-time OS for their mobile chipset firmware and
operating system, and L4-based mobile phones started ship-
ping in 2006.

This lead to the creation of the company Open Kernel Labs
(OK Labs), which marketed and further developed the kernel
under the name OKL4. The 2.1 release of OKL4 (2008) was
the first L4 kernel to use capability-based access control.
OKL4 was distributed under an open-source license until
version 3.0 (released in 2009), after which it went closed-
source. OK Labs, having a strong interest in virtualisation,
then built a hypervisor from scratch based on L4 principles,
called the OKL4 Microvisor [Heiser and Leslie 2010]. At
least 2 billion copies of versions of OKL4 were deployed on
various mobile devices to date (and continue to ship).

A number of other commercial clones appeared over the
years. Sysgo developed an independent implementation of
the V2 ABI, called P4, which was later optimised, certified
and deployed in avionics under the name PikeOS.2 Codezero
from B Labs is a recent GPLed clone of OKL4 V3.0 for
ARMv7 processors in mobile devices.3

seL4 represents the most significant departure from the
traditional L4 model. From the beginning, its design not only
aimed to support formal verification, but also ease of reason-
ing about security and safety. This lead to a model where all
(spatial) resource allocation is explicit and at user-level, in-
cluding kernel memory [Elkaduwe et al. 2008]. It is also the
first protected OS kernel in the literature with a complete and

2 See Sysgo’s web site http://www.sysgo.com/.
3 See B Labs’ web site http://dev.b-labs.com/.

2 2013/4/29

http://www.sysgo.com/
http://dev.b-labs.com/


Name Architecture Size (kLOC)
C/C++ asm Total

Original 486 0.0 7 7
L4/Alpha Alpha 21264 0.0 10.5 10.5
L4/MIPS MIPS64/R4k 6.0 4.5 10.5
Hazelnut x86 10.0 0.8 10.8
Pistachio x86 22.4 1.4 23.0
L4-embedded ARMv5 7.6 1.4 9.0
OKL4 3.0 ARMv6 15.0 0.0 15.0
Fiasco x86 36.2 1.1 37.6
seL4 ARMv6 9.7 0.5 10.2

Table 2. Source lines of code (SLOC) of various L4 kernels.
The size of the original kernel is an estimate derived from the
12 KiB binary size [Liedtke 1996b].

sound worst-case execution time (WCET) analysis [Black-
ham et al. 2011]. We will discuss seL4’s design principles in
Section 4.

3. Microkernel Design and Implementation
3.1 Principles and concepts
Liedtke [1995] outlines principles and mechanisms which
drove the design of the original L4. We’ll examine what is
left of them in modern versions, especially seL4.

3.1.1 Minimality
Liedtke formulated a minimality principle as the core driver
of his design:

A concept is tolerated inside the µ-kernel only if mov-
ing it outside the kernel, i.e. permitting competing im-
plementations, would prevent the implementation of
the system’s required functionality [Liedtke 1995].

This principle, which is a more pointed formulation of “only
minimal mechanisms and no policy in the kernel,” has contin-
ued to be a core driver of the design of L4 microkernels. This
is possibly best demonstrated by a comparison of source code
sizes, as shown in Table 2: seL4, the latest member of the
family (and, arguably, the one that diverged strongest from
the traditional model) is still essentially the same size as the
early versions.4

Nevertheless, none of the designers of L4 kernels to date
claim that they have developed a “pure” microkernel in the
sense of strict adherence to the minimality principle. For ex-
ample, all of them have a scheduler in the kernel, which im-
plements a particular scheduling policy (usually hard-priority
round-robin). To date, no-one has come up with a workable
mechanism which would delegate all scheduling policy to
user-level without imposing high overhead.

4 In fact, seL4’s SLOC count is somewhat bloated as a consequence of the
C code being mostly a “blind” manual translation from Haskell [Klein et al.
2009], resulting in hundreds of small functions. The kernel compiles into
about 9 k ARM instructions.

Retained: Minimality is still the key design principle.

3.1.2 Recursive address spaces
A safe abstraction of memory is a fundamental requirement
for a microkernel. The recursive address-space model of orig-
inal L4 had an unusual approach: A new address space is ini-
tially empty. This (target) address space can be populated by
another (source) address space (typically the target’s “pager”)
mapping some of its own pages into the target space. The
primitives are map, which logically creates a mapping from
the target page to the source page, grant, which moves the
source’s page to the target (i.e. it creates a mapping from the
target to the source’s source, and the source address space
completely loses the page) and unmap, which undoes a map.
The recursion bottoms out in an address space “σ0”, which is
magically created at boot time as a map of physical memory
(as far as it is not reserved by the kernel).

The recursive address-space model is elegant, and natu-
rally supports virtualisation at each level: a “virtualiser” can
be inserted between the source and the destination, which
forwards some mappings unchanged, but emulates others as
needed. However, it has significant cost in terms of kernel
complexity and memory overhead. If a page in an address
space near the root of the hierarchy is revoked, all depending
mappings must be unmapped as well.

Supporting this feature requires substantial bookkeeping
in the form of a “mapping database”. NICTA removed the
recursive mapping model from the N1 ABI, after observ-
ing that typically 25–50% of kernel memory use was con-
sumed by the mapping database. In L4-embedded, mappings
always originate from frames, bringing the abstraction closer
to hardware, an approach also adopted by the commercial
OKL4 kernels. The cost of this change was foregoing the
ability to delegate memory management. Full generality was
restored later with seL4’s memory-management model (see
Section 4.2).

Abandoned: Recursive address spaces.

3.1.3 User-level device drivers and interrupts as IPC
The maybe most radical novelty of L4 (or, rather, its pre-
decessor, L3 [Liedtke et al. 1991]) was to make all device
drivers user-level processes.5 This is still a hallmark of all L4
kernels. Like most of them, seL4 has a single driver in the
kernel: a timer driver used for preempting user processes at
the end of their time slice. All other device drivers run in user
mode.

The user-level driver model is tightly coupled with mod-
elling interrupts as IPC messages the kernel sends to the
driver. Details of the model, as well as the association and
acknowledgment protocol, have changed over the years (and

5 Strictly speaking, this had been done before, in the Michigan Terminal
system [Alexander 1972] and the Monads OS [Keedy 1979], but those
designs had little direct impact on later ones and there is no information
about performance.

3 2013/4/29



at times changed back and back again) but the principle still
holds.

Retained: User-level drivers and interrupts as mes-
sages remain core philosophy.

3.1.4 Threads as IPC destinations
The original L4 had threads as the targets of IPC operations,
although Liedtke [1993a] noted that ports could be imple-
mented with a 12% overhead. The model required that thread
IDs were unique identifiers.

The drawback of this model is poor information hiding.
A multi-threaded server had to expose its internal structure
to clients, or use a gateway thread, which could become a
bottleneck and would impose additional communication and
synchronization overhead. There were a number of proposals
to mitigate this but they all had drawbacks. Furthermore, the
global IDs introduced covert channels [Shapiro 2003].

Influenced by EROS [Shapiro et al. 1999], seL4 and other
recent L4 kernels (such as Fiasco.OC [Lackorzynski and
Warg 2009]) introduced IPC endpoints as IPC destinations.
These are essentially lightweight ports: the root of the queue
of pending messages/senders is a now a separate kernel ob-
ject, instead of hanging off the recipient’s thread control
block (TCB).

Replaced: Thread IDs by port-like IPC endpoints as
message destinations.

3.1.5 Synchronous IPC and long messages
The original L4 only supported synchronous (rendezvous-
style) IPC. It also supported messages of almost arbitrary
size (a word-aligned “buffer” as well as multiple unaligned
“strings”) in addition to in-register arguments. This approach
turned out to be problematic in a number of ways.

The all-synchronous design was driven by the desire to
avoid redundant copying. Register arguments supported zero-
copy: the kernel always initiated the IPC from the sender’s
context and switched to the receiver’s context without touch-
ing the message registers.

“Long” messages could be delivered with a single copy:
executing in the sender’s context, the kernel sets up a tempo-
rary mapping window into the receiver’s address space cov-
ering (parts of) the message destination, and copies directly
to the receiver.

This could trigger a page fault during copying in either the
source or destination address space, which required the ker-
nel to handle nested exceptions. Furthermore, the handling of
such an exception required invoking a user-level page-fault
handler, while still handling the IPC system call, pretend-
ing that the fault happened during normal user-mode execu-
tion, and on return re-establish the original system-call con-
text. The result was significant kernel complexity, with many
tricky corner cases that risked bugs in the implementation.

While long IPC provides functionality which cannot be
emulated without some overhead, in practice it was rarely

used. It also seemed to violate the minimality principle
(which talks about functionality, not performance). Conse-
quently, long IPC was removed from L4-embedded and the
OKL4 microkernel derived from it.

For seL4 there were even stronger reasons for staying
away from supporting long messages: the formal verifica-
tion approach explicitly avoided any concurrency in the ker-
nel [Klein et al. 2009], and nested exceptions introduce a
degree of concurrency. Of course, the in-kernel page faults
could be avoided with extra checking, but that would intro-
duce yet more complexity (besides penalising best-case per-
formance).

Abandoned: “Long” IPC.

Besides this simplification, IPC was somewhat enriched
in another way: by adding asynchronous notifications, first
introduced in L4-embedded. These are a very simple form
of asynchronous IPC: sending is asynchronous, in that the
system call returns immediately after delivering the payload
in the receiver’s address space. The receiver can either block
on a notification or poll. The feature was motivated by the
realisation that the rendezvous model forces a multi-threaded
design on many otherwise relatively simple systems.

Asynchronous notifications avoid introducing copy over-
head by keeping the payload restricted to (a subset of) a sin-
gle word. Each thread has a single-word notification field. A
send operation specifies a mask of bits, which is OR-ed into
the receiver’s notification field. The receiver can wait on the
notification bits to change or can poll the notification word.

Asynchronous notification thus is quite similar to hard-
ware interrupts (with the slight generalisation that it can
transfer multiple flags, while an interrupt generally just in-
dicates an interrupt level or number). Consequently, current
L4 versions model IRQs as asynchronous notifications.

Added: Asynchronous notifications.

3.1.6 Hierarchical task management and
communication control

The original L4 had a process hierarchy, where there was
a (large but fixed) set of task IDs, which were essentially
process-management capabilities; they could be transferred
to child address spaces. They doubled as a mechanism for
communication control: IPC could only be sent to siblings
(the “clan”) or the parent (called “chief”), any IPC directed
outside the clan was transparently re-directed to the chief
(which could forward it in a way transparent to the receiver).
Similarly, a message directed into a sibling’s clan was re-
directed to the sibling.

While Liedtke [1995] argued that the clans-and-chiefs
model only added two cycles per IPC operation, this only ap-
plies where direct communication is possible. Once messages
get re-directed, each such re-direction adds two messages to a
(logically) single round-trip IPC, a significant overhead. Fur-
thermore, the strict process hierarchy was unwieldy in prac-

4 2013/4/29



tice (and was probably the L4 feature most cursed by people
trying to build L4-based systems). It is a prime example of
kernel-enforced policy (address-space hierarchy) limiting the
design space.

As a consequence of these drawbacks, many L4 imple-
mentations did not implement clans-and-chiefs (or disable it
at build time), but that meant that there was no way to control
IPC. There were experiments with models based on a more
general form of IPC redirection [Jaeger et al. 1999], but these
failed to gain traction.

The introduction of capability-based access control for all
kernel objects (together with a clean model for controlling
their propagation) in more recent L4 kernels provides a more
principled (and in the end more efficient) model: Endpoint ca-
pabilities support communication control, and address-space
capabilities support managing the address-space resource.

Abandoned: Clans-and-chiefs.

3.2 Design and implementation tricks
Liedtke [1993a] list a set of design decisions and implemen-
tation tricks which helped to make IPC fast in the original
i386 version, although some of them smell of premature op-
timisation.

Some have already been mentioned, such as the temporary
mapping window used in the (now obsolete) long IPC. Others
are uncontroversial, such as the send-receive combinations
in a single system call (the client-style call for an RPC-
like invocation and the server-style reply-and-wait). We will
discuss the remaining ones in more detail.

3.2.1 Strict process orientation and virtual TCB array
The original L4 had a separate kernel stack for each thread
(allocated inside the thread’s TCB). This allowed obtaining
the present thread’s TCB by masking the low-order bits off
the kernel stack pointer.

Process-orientation was tightly coupled with allocating
all TCBs in a sparse, virtually-addressed array, indexed by
thread ID. During IPC, this enables a very fast lookup of
the destination TCB, without first checking the validity of
the destination thread ID: If the caller supplies an invalid ID,
the lookup may access an unmapped TCB, triggering a page
fault, which the kernel handles by aborting the IPC. If no fault
happened, the validity of the thread ID can be established
by comparing the caller-supplied value with the one found
in the TCB. (Note that original L4’s thread IDs had version
numbers, which changed when the thread was destroyed and
re-created. This was done to make thread IDs unique in time.
Recording the current ID in the TCB allowed detecting stale
thread IDs.)

Both features come at a cost: The many kernel stacks
dominate the per-thread memory overhead, they also increase
the kernel’s cache footprint. The virtual TCB array increases
the kernel’s virtual memory use and thus the TLB footprint,
but avoids the additional cache footprint for the lookup table

that would otherwise be required. TLB pressure is not much
of an issue on x86 processors with untagged TLBs, as any
cross-address-space IPC will implicitly flush the TLB any-
way. However, RISC processors had tagged TLBs early on.

The kernel’s memory use became a significant issue when
L4 was gaining traction in the embedded space, so the design
needed revisiting.

Haeberlen [2003] built the first event-based (single-stack)
variant of L4 based on Hazelnut while experimenting with
designs for utilizing virtual memory in the kernel. As such,
the Pentium-based evaluation was not focused substantiating
an event-based kernel, however the results were promising
with a reduction in kernel memory consumption, and im-
provement of 20% in IPC micro benchmarks compared to a
(still immature) version of Pistachio.

Later, Warton [2005] performed a specifically targeted
analysis of the performance tradeoff of event vs. process ker-
nels, and implemented an event-based (single-stack) kernel
with continuations in Pistachio. An evaluation on an ARMv5
processor showed that while the process kernel outperformed
the event kernel on micro benchmarks by small margins (gen-
erally within 1%), on a multi-tasking workload (AIM7) the
event kernel had a performance advantage of about 20%.

Warton also showed that while the TCB size (ignoring
the stack) of the single-stack kernel was more than twice
that required for the process kernel (the storage overhead
of continuations), taking the stack into account, the event
kernel’s per-thread memory use is a quarter of that of the
process kernel. Note that this space problem was less severe
in the original L4, as it was all assembler code and did not
use standard stack frames.

Similarly, Nourai [2005] analysed the trade-offs of virtual
vs. physical addressing of TCBs. He implemented physical
addressing, also in Pistachio, although on a MIPS64 proces-
sor. He found little if any differences in IPC performance
in micro-benchmarks, but significantly better performance of
the physically-addressed kernel on workloads that stressed
the TLB. The MIPS is somewhat anomalous in that it sup-
ports physical addressing even with the MMU enabled, while
on most other architectures “physical” addressing is simu-
lated by idempotent superpage mappings. Still Nourai’s re-
sults convincingly indicate that there is no significant perfor-
mance benefit from the virtually-addressed TCBs.

Together, these results lead to L4-embedded moving to
an event-based design with physically-addressed kernel data,
and seL4 followed suit.

Abandoned: Process kernel and virtual TCB address-
ing.

3.2.2 IPC timeouts
Any IPC operation in the original L4 had a timeout value to
protect against denial of service. (This feature could also be
used for timed sleeps by waiting on a message from a non-
existing thread.)

5 2013/4/29



An IPC syscall actually specified 4 timeouts: one to limit
blocking until start of the send phase, one to limit blocking
in the receive phase (measured from the time of completion
of the send), and two more to limit blocking on page faults
during the send and receive phases (of long IPC). Timeouts
values were encoded in a compressed floating-point format
that supported the values of zero, infinity, and a range of finite
values ranging from one millisecond to weeks.

Timeouts added significant complexity for decoding the
floating-point values as well as for managing wakeup lists.
They were an implied requirement of long IPC: A malicious
client could send a long message to a server, ensure that it
would page fault, and prevent its pager from servicing the
fault. The server could use the page-fault timeout to protect
against this denial-of-service attack.

Practically, however, timeouts were of little use. There
is no theory, or even good heuristics, for choosing timeout
values in a non-trivial system, and in reality, only the val-
ues zero and infinity were used: A client sends and receives
with infinite timeouts, while a server waits for a request with
an infinite but replies with a zero timeout. (The semantics
of the call operation specifies an atomic switch from send
to receive phase, so a client using call to invoke the server
is guaranteed to be ready to receive.) Traditional watchdog
timers can be used for detecting unresponsive IPC interac-
tions much simpler than through IPC timeouts.

Having abandoned long IPC, L4-embedded replaced time-
outs by a single flag supporting a choice of polling (zero time-
out) or blocking (infinite timeout). Only two flags are needed,
one for the send and one for the receive phase.

Abandoned: Timeouts.

3.2.3 Lazy scheduling
In the rendezvous model of IPC, a thread’s state frequently
alternates between runnable and blocked. This implies fre-
quent queue manipulations, moving threads between the run
queue and a waiting queue, often many times within a time
slice.

Liedtke’s lazy scheduling trick minimises these queue ma-
nipulations: When a thread blocks on an IPC operation, the
kernel updates its state in the TCB but leaves the thread in the
run queue, in the hope that it will unblock soon. Similarly,
threads which become runnable are not dequeued from their
timeout wakeup queue and not entered into the run queue.

When the scheduler is invoked on a time-slice preemption,
it traverses the run queue until it finds a thread that is really
runnable, and removes the ones that are not.

The drawback of lazy scheduling was discovered when
analysing seL4’s worst-case execution time (WCET) for en-
abling its use in hard real-time systems [Blackham et al.
2012]: The execution time of the scheduler is only bounded
by the number of threads in the system!

However, the removal of IPC timeouts (and thus wakeup
queues) enabled an equivalent optimisation, referred to as

Benno scheduling, which does not suffer from pathological
timing behaviour: While a thread which blocks during IPC
is removed from the run queue, a thread which is unblocked
during an IPC is not inserted into the run queue. At any time,
there can be only one such thread (per processor) with is
runnable but not in the ready queue: the currently running
one. At preemption time, the kernel inserts the preempted
thread into the run queue if needed, which re-establishes the
invariant that the run queue contains all runnable threads and
no others.

Replaced: Lazy scheduling by Benno scheduling.

3.2.4 Direct process switch
L4 traditionally tries to avoid running the scheduler during
IPC. If a thread gets blocked during an IPC call, the kernel
switches to a readily-identifiable runnable thread, which then
executes on the original thread’s time slice, generally ignor-
ing priorities. This approach is called direct process switch.

It makes more sense than one might think at first, espe-
cially when assuming that servers have higher priority than
clients. On the one hand, if a (client) thread performs a call
operation (to a server), the caller will obviously block until
the callee replies. Having been able to execute the syscall,
the thread must be the highest-priority runnable thread, and
the best way to observe its priority is to ensure that the callee
completes as quickly as possible (and the callee is likely of
higher priority anyway).

On the other hand, if a server replies to a waiting client
(execution the reply-and-wait syscall), and the server has
a request waiting from another client, it makes sense to con-
tinue the server by executing the receive phase of its IPC.

Modern L4 versions, concerned about correct real-time
behaviour, retain direct-process switch where it conforms
with priorities, and else invoke the scheduler.

Replaced: Direct process switch subject to priorities.

3.2.5 Register messages
In its desire to minimise IPC costs through zero-copy mes-
sage transfer (see Section 3.1.5), original L4 packed as many
message words into registers, and for cases were these were
insufficient, supported the “long IPC” semantics with buffers
pointed to by the register messages.

The size of the “direct” (in-register) message was there-
fore highly dependent on the architecture. It also changed
between ABI versions, as changes to system-call arguments
consumed or freed additional registers.

Pistachio avoids this problem by specifying a moderate-
size (configurable in the range 16–64 words) set of vir-
tual message registers. The implementation mapped some of
these to physical registers, the rest was contained in a pinned
part of the address space called the user-level TCB (origi-
nally introduced to support ultra-fast user-level IPC [Liedtke
and Wenske 2001]). The pinning ensures a register-like se-
mantics without the possibility of a page fault. Inlined access

6 2013/4/29



functions hide the distinction between physical and memory-
backed registers from the user. seL4 uses a variant of this
approach, with a pinned message buffer per thread.

Replaced: Physical by virtual message registers.

3.2.6 Non-standard calling convention
The original L4 kernel was completely implemented in as-
sembler, and therefore the calling convention was irrelevant
inside the kernel. At the ABI, all registers which were not
needed as syscall parameters were designated as message
registers. The library interface provided inlined assembler
stubs to convert the compiler’s calling convention to the ker-
nel ABI (in the hope the compiler would optimize away any
conversion overhead).

The next generation of L4 kernels, starting with L4/MIPS,
were all written at least partially in C (and later C++). At
the point of entering C code, these kernels had to re-establish
the C compiler’s calling convention, and revert to the ker-
nel’s convention on return. This made calling C functions
relatively expensive, and therefore discouraged the use of C
except for inherently expensive operations.

Later kernels where written almost exclusively in C
(Hazelnut) or C++ (Fiasco, Pistachio). The cost of the
calling-convention mismatch (and the lack of Liedtke-style
masochism required for micro-optimising every bit of code)
meant that the C code did not exhibit performance that was
competitive to the old assembler kernel. The implementors
of those kernels therefore started to introduce hand-crafted
assembler fast paths. These lead to IPC performance compa-
rable to the original L4 (see Table 1).

The assembler fast path approach was discarded in the
OKL4 Microvisor because of the high maintenance cost of
assembler code, which was not justified by a performance
improvement of typically less than 10%. It was also not
suitable for seL4, as the verification framework could only
deal with C code [Klein et al. 2009], and the team wanted
to verify the kernel’s functionality as completely as feasible.
Assembler code was restricted to the bare minimum, and
therefore calling-convention conversions were ruled out as
well, forcing the team to adopt the tool chain’s standard
calling conventions.

seL4 is also highly dependent on fast-path code to obtain
competitive IPC performance, but the fast paths must now be
implemented in C. However, it turned out that by carefully
hand-crafting the fast path, including providing hints to the
compiler about (verified) invariants that the compiler is un-
able to determine by static analysis, highly-competitive IPC
latencies can be achieved [Blackham and Heiser 2012].

In fact, the finally achieved latency of 185 cycles for a
one-way IPC on an ARM11 processor is about 10% better
than the fastest IPC we had measured on any other kernel
on the same hardware! While this is partially a result of the
simplified seL4 ABI and IPC semantics, it shows that assem-

bler implementations are no longer justified by performance
arguments.

Abandoned: Non-standard calling conventions and
assembler code for performance.

3.2.7 Non-portability
Liedtke [1995] makes the point that a microkernel im-
plementation should not strive for portability, as a hard-
ware abstraction introduces overheads and hides hardware-
specific optimisation opportunities. He cites subtle architec-
tural changes between the “compatible” i486 and Pentium
processors resulting in shifting tradeoffs and implying sig-
nificantly changes in the optimal implementation.

This argument was debunked by Liedtke himself, with
the high-performance yet portable Hazelnut and Pistachio
kernels. Highly-tuned (and sometimes micro-architecture-
specific) fast paths can achieve performance that is at par with
the original L4 (see Table 1) while keeping 80–90% of the
implementation architecture-agnostic.

Abandoned: Non-portable implementation.

3.3 Is it still L4?
Having abandoned so many of the design and implementation
features that seemed to define the original L4, one naturally
asks “in which sense is it still L4?”

On the one hand, the answer to this question is probably
not terribly important. On the other hand, seL4 is very much
considered part of the “L4 family”, both inside the seL4
team and outside, so there is probably some reason for this
sentiment.

First of all, seL4 is the (presently) latest data point in the
evolution of high-performance microkernels derived from the
original L4, even though seL4 presents the arguably largest
step in this evolution, given its significant departure from
traditional L4 ways in regards to resource management.

Then seL4 still follows the original philosophy of mini-
mality of concepts and mechanisms without foregoing gener-
ality, and tight coding aimed at optimising critical IPC oper-
ations. In some ways, seL4 is probably more economical in
its abstractions than any previous L4 kernel, although this is
hard to quantify.

4. seL4 Design
While L4 microkernels generally had a strong average-case
performance focus (and, in the case of Fiasco, a focus on
real-time performance [Härtig and Roitzsch 2006]), security
(or more specifically, the design and assurance of it) has tra-
ditionally received only modest attention. seL4, in contrast,
is designed from the beginning to support formal reasoning
about security and safety, while maintaining the L4 tradition
of minimality and performance.

Specific high-level requirements were:

1. All authority is explicitly conferred (via capabilities).

7 2013/4/29



2. Data access and authority can be confined.

3. The kernel itself (for its own data structures) adheres
to the authority distributed to applications, including the
consumption of physical memory. We examine this more
closely in Section 4.2.

4. All kernel objects can be reclaimed independent of any
other kernel objects. For example, page-table memory can
be reclaimed without having to destroy the corresponding
address space. We’ll discuss this in Section 4.3.

5. All operations are “short” in execution time, or are pre-
emptible in short time (to support real-time analysis).
Here, short either stands for constant time or linear in a
small number. For example, object initialisation is linear
in size, where size is less than a page. This is a require-
ment for reasoning about the safety of real-time systems,
and is examined further in Section 4.4.

6. Performance is not significantly worse than the fastest L4
kernels (say within 10%).

We now examine goals 1–5 (performance has been dis-
cussed in the previous section), discuss our approach to
achieving them, and the degree to which we succeeded.

4.1 Security Focus
Requirements (1) and (2) above are well understood in the
security community, and seL4 borrows from capability sys-
tems such as CAP [Needham and Walker 1977], KeyKOS
[Bromberger et al. 1992] and EROS [Shapiro et al. 1999]. All
seL4 system calls involve a capability invocation, which au-
thorizes the call to the kernel.6 They are also relatively simple
by virtue of being low-level operations on few kernel objects.

User-mode memory access and instruction execution
are explicitly (although indirectly) included in the security
model: user-mode access is mediated by page tables which
map physical memory, and the security model treats page ta-
bles as capability storage (and page table entries as capabili-
ties).

To facilitate revocation of resources, seL4 tracks capabil-
ity derivations in a capability derivation tree (CDT); the tree
pointers are stored inside the capabilities themselves to avoid
memory allocation for book keeping.

The most characteristic aspect of seL4’s security design is
its approach to connecting the kernel’s memory consumption
with authority, which we examine in Section 4.2. It effec-
tively makes kernel memory subject to the user-mode author-
ity mechanisms, and thus extends user-mode authority sepa-
ration to kernel resources. The success of this approach was
recently demonstrated, when it enabled first a proof of in-
tegrity enforcement [Sewell et al. 2011], followed by a proof
of non-interference (and, by implication, confidentiality en-

6 The single exception is the yield() system call, which triggers the sched-
uler.

forcement) [Murray et al. 2013], both a first for a general-
purpose OS kernel.

One of the more encouraging outcomes is summarised in
the following statement, which implies that the design was
sufficiently clean and easy to understand to get it right on the
first attempt:

During this proof of noninterference we did not find
any information-flow problems in the seL4 kernel that
required code changes, as we had hoped given the pre-
vious intensive work on proving functional correctness
and integrity [Murray et al. 2013].

4.2 Memory Management
4.2.1 The kernel memory problem
The advantage of having all authority represented by capa-
bilities is that it facilitates reasoning about the security state
of a system configuration by reasoning about the distribution
of capabilities. However, this is only sufficient if capabilities
represent all authority in the system.

The kernel’s own memory management is an area where
there is a potential gap between the authority to use a kernel
service, and the memory consumed in providing the service.
For example, the ability to map virtual pages into an address
space may indirectly allocate page tables to record the map-
pings.

The consequence is a potential for denial-of-service at-
tacks by forcing the kernel into excessive memory consump-
tion. Original L4 had this problem [Liedtke et al. 1997b], as
do other systems, where it is not possible to precisely reason
about in-kernel memory consumption based on authority to
access kernel services. As a result, reasoning about applica-
tion authority alone is insufficient to strictly enforce in-kernel
memory isolation.

Kernels that manage memory as a cache of user-level
content only partially address this problem. While caching-
based approaches remove the opportunity for denial-of-
service based on memory exhaustion, they do not enable the
strict isolation of kernel memory that is a prerequisite for per-
formance isolation or real-time systems. A precise relation-
ship between the authority (in our case capabilities) and the
consumption of kernel memory is required to connect reason-
ing about authority (and isolation thereof) and the consump-
tion of in-kernel memory.

In essence, this is the third in the above list of design
requirements.

4.2.2 Approach
To connect the authority an application possesses with ker-
nel memory consumption, we (1) make all in-kernel allocated
objects first-class objects in the ABI, and (2) ensure that no
objects change their size after creation. This integrates ker-
nel objects into the general protection system, and makes
them subject to capability-mediated authority. The approach
is inspired by hardware-based capability systems, specifi-

8 2013/4/29



Object Description
TCB Thread control block
Cnode Capability storage
Synchronous
Endpoint

port-like rendezvous object for syn-
chronous IPC

Asynchronous
Endpoint

A port-like object for asynchronous
notification.

PageDirectory Top-level page table for ARM and
IA-32 virtual memory

PageTable Leaf page table for ARM and IA-32
virtual memory

Frame 4 KiB, 64 KiB, 1 MiB and 16 MiB
objects that can be mapped by page
tables to form virtual memory

Untyped Memory Power-of-2 region of physical
memory from which other kernel
objects can be allocated

Table 3. seL4 kernel objects.

cally CAP [Needham and Walker 1977] where hardware-
interpreted capabilities directly refer to memory.

The approach is made feasible by sL4’s microkernel de-
sign, with a small set of abstractions and thus object types.
Table 3 summarises seL4’s object types.

Higher-level concepts, such as a process, are user-level ab-
stractions created by associating different objects. For a pro-
cess this might be TCBs, Cnodes, PageTables, a PageDi-
rectory and Frames.

4.2.3 Memory allocation
Making all kernel data structures first-class objects in the API
alone is insufficient to align authority with memory consump-
tion; a model of creation of those objects is required. The
model must be able to represent the authority to memory re-
gions that are used by an application to create the kernel ob-
jects. Additionally, the model must ensure the kernel integrity
requirement that no two objects overlap.

In seL4 we enforce this by the requirement that any ob-
jects are allocated from Untyped Memory (UM) objects.
UM represents power-of-2 sized and aligned regions of phys-
ical memory. An UM capability represents the authority to
a region of memory, that an application can use to create a
typed memory object, i.e. an object that supports a specific
kernel service. The retype() method of a UM capability is
invoked with the type of the required memory object. In re-
sponse, the kernel creates a new object and a capability with
full authority over the object (provided that the request sat-
isfies the integrity condition that the new object is fully con-
tained within the UM and does not overlap with other ob-
jects).

At boot time, seL4 preallocates the memory required for
its own code, data, and stack (which is strictly bounded). It
then creates an initial “process” (consisting of a minimal set

of objects according to a startup protocol). The kernel de-
posits in that process’s Cnode the capabilities to the process’
own objects, as well as UM caps to all remaining (so far un-
used) memory. The process then has all the authority in the
system. It can, for example, partition its UM, and start up new
processes in each of the partitions, thus delegating manage-
ment of each partition to its initial process.

Bedsides the requirement of non-overlapping objects, the
kernel enforces a second key integrity property: User-mode
code cannot uncontrollably modify kernel objects. The ker-
nel ensures this by ensuring that only Frame objects can be
mapped into the virtual address space of applications (i.e. in-
serted into a PageTable). The kernel never accesses Frame
objects (except for the buffer of virtual registers, which is
used for passing system-call arguments between kernel and
user).

4.2.4 Memory Re-use
For simple static systems, the model presented thus far is
sufficient for allowing applications to allocate kernel objects
for obtaining services, to distribute that authority to clients,
and to explicitly manage and limit the consumption of kernel
memory. Dynamic systems furthermore need to be able to
reclaim and re-use memory.

Reclamation implies a further integrity requirement: no
reference that would allow access to an object must remain
after reclamation. Besides imposing invariants on kernel data
structures, this means that the kernel must ensure that there
are no capabilities left to a typed object that is being re-
claimed.

The requirement is satisfied with the help of the CDT
introduced above. Objects are revoked by invoking the
revoke() method on a UT object further up the tree; this
will remove all capabilities to all objects derived from that
UT. When the last capability to an object is removed (a con-
dition easy to detect, as it cleans up the last leaf node in the
CDT referring to a particular memory location) the object it-
self is deleted. This removes any in-kernel dependencies it
may have with other objects, thus making it available for re-
use.

Owing to the derivation hierarchy, revocation is a long-
running operation (bounded only by the amount of physical
memory). It must therefore be preemptible, more on that in
Section 4.4.

4.3 Object Independence
The resource management model introduced above is suffi-
cient for reasoning about the distribution of both authority
and memory using the distribution of capabilities. The cre-
ation of kernel objects is strictly limited by access to UM,
and memory can be reclaimed safely by revocation of capa-
bilities.

However, the power of this model, together with the low-
level nature of seL4 kernel services, requires a further in-
variant: every object must be reclaimable in isolation. Ker-

9 2013/4/29



nel objects inherently reference other objects. For example, a
TCB belongs to an address space, and therefore references a
PageDirectory, which references PageTables.

While it is intuitive that removing all capabilities to an ob-
ject will result in the object being reclaimed, it is not obvious
how all references from other kernel objects will be removed
if an object is destroyed. While the CDT allows locating all
of an object’s caps, some of these internal references may not
be caps but just normal pointers.

A traditional OS avoids this problem by defining a par-
ticular order of reclamation of various in-kernel data struc-
tures. For example, killing a process might require first free-
ing physical frames, then leaf page tables, then the page di-
rectory, prior to freeing the process control block. In seL4,
such an ordering is not enforced (or enforceable), as recla-
mation of objects is at the discretion of user level code, and
the kernel cannot rely on sane userland behaviour.

In order to ensure object independence, composable ob-
jects adhere to the following invariant. The capabilities (au-
thority) used to couple objects must also facilitate decoupling
the objects when authority is revoked. The seL4 design has
three scenarios relevant to maintaining this invariant.

Objects may refer to each other with internal pointers. For
example, if a thread blocks waiting on an Endpoint, the TCB
is enqueued into the Endpoint’s doubly-linked waiting list.
As a result, the TCB has a reference to the Endpoint, and
vice versa. If either object is reclaimed, the reference must
be removed and the surviving object made consistent. This
approach is only applicable where the object format is not
dictated by hardware.

Objects contain capabilities to other objects. In this case,
the objects are coupled by inserting a copy of a capability,
e.g. a TCB contains a PageDirectory capability. In this
case, revocation of the capability automatically decouples the
object.

The capability contains the book-keeping data. Some ca-
pabilities have space that can be used for book-keeping. For
example, when a Frame is mapped into an address space,
the Frame capability is updated to record the location of
the PageTable entry (PTE) affecting the mapping. A Frame
cap can only hold one such PTE reference, so if Frames are
shared, their caps must be explicitly copied.

Capability-based book keeping alone is insufficient to de-
couple the composition should a PageTable be reclaimed.
The book-keeping data of the cap of each Frame mapped in
the PageTable must be updated to remove the reference to
the PageTable. Thus we need to locate the Frame cap us-
ing the physical frame address contained in the PTE. Older
L4 kernels had an analogous problem with their mapping
database, which contained shadow page tables, which in turn
held back-links to the mappings used to establish the PTE.

In seL4 we can solve this problem by using the existing
capability derivation tree, in which capabilities are stored in a

total order based on physical address, depth of derivation, and
in the case of a Frame, PTE address. Given a particular PTE,
we can find the Frame cap used to install the mapping by
probing the CDT, a log(n) operation, where n is the number
of capabilities in the CDT.

The capability-based book keeping approach is only used
for PageTable objects and Frame objects, as the format of
the PageTable object is dictated by hardware and does not
support explicit object references.

4.4 Preemption
Like most L4 kernels, the seL4 kernel executes with inter-
rupts disabled. Historically this approach has been used to
maximise average-case performance. In the case of seL4,
there is an additional reason for this choice: it keeps con-
currency out of the kernel, and was needed to make formal
verification tractable [Klein et al. 2009].

A key target domain for seL4 deployment is that of safety-
critical systems, many of which are of a hard real-time nature,
requiring hard bounds on the latency of interrupt delivery.
The seL4 design therefore uses preemption points to allow
potentially long-running operations to be postponed while a
higher-priority thread executes. As a consequence, all global
kernel invariants must be re-established by the end of ker-
nel operations, and when any operation is preempted. This
requires kernel careful design to ensure that suitable preemp-
tion points can be inserted into long-running operations.

The kernel operations that are potentially long-running
are:

• object initialisation (especially large memory frames or
Cnodes);

• revocation of capabilities;
• decoupling of objects from reclaimed objects, e.g. remov-

ing all the threads waiting on an IPC endpoint, or remov-
ing all frames from a page table.

With the right design, revocation and decoupling opera-
tions (all related to object deletion paths) have natural pre-
emption points. For example, the CDT in seL4 is designed
to ensure that deletion can be decomposed into a series
of constant-time operations, where all kernel invariants are
maintained between each step. We call such a design incre-
mentally consistent.

Some versions of seL4 have contained data structures that
do not exhibit incremental consistency, resulting in long-
running operations that cannot be decomposed. Such op-
erations (e.g., choosing a new thread in lazy scheduling)
are sources of large worst-case interrupt latencies which are
detrimental to real-time performance. Refinements of seL4’s
design have strived to eliminate these by employing the in-
cremental consistency principle [Blackham et al. 2012].

In seL4, system calls are made restartable by storing
progress explicitly in either the disabled capability (called
a zombie in seL4) or the object itself, or implicitly by the

10 2013/4/29



entries remaining on a queue. Using restartable system calls,
all pre-conditions required for the operation (which may have
changed while being preempted) are re-established on restart.

4.5 Notifications
The seemingly innocuous semantics of asynchronous noti-
fication demonstrates how easy it is to get a design wrong.
In the initial version, the send operation OR-ed a sender-
supplied bit mask with a single-word notification field in the
TCB. The receiver could poll that field, or block until a noti-
fication was received. In the latter case, the notification word
was atomically delivered to the receiver and simultaneously
reset to receive new notifications.

With the move to endpoints as IPC destinations, an ex-
plicit asynchronous endpoint capability invocation is re-
quired to receive a notification. This meant that a thread
is able to either wait for synchronous or for asynchronous
IPC, but not both concurrently. This design was a mistake:
A server dealing with asynchronous I/O and synchronous
clients required multiple threads with complex synchroniza-
tion, even for otherwise trivially simple systems.

As a consequence we changed the design. An asyn-
chronous endpoint is now bound to a particular thread,
allowing that thread to be notified of pending notifications
while blocked on a synchronous endpoint. This feature en-
ables event-based service implementations that manage both
synchronous clients and asynchronous I/O.

4.6 Open issues
4.6.1 Time
One challenge that has been around since the early day of L4
is finding an appropriate abstraction for time. Fundamentally,
the kernel abstracts space (memory) and time (execution on
the CPU). The seL4 abstraction for the former is satisfactory.
For time, seL4 has not really progressed from the original L4.

The scheduling model of the original L4, hard-priority
round-robin, is still alive, despite being a gross heresy against
the core microkernel religion of policy-freedom. All past
attempts to export scheduling policy to user level have failed,
generally due to intolerable overheads.

On the one hand, the notion of a single, general-purpose
kernel suitable for all purposes may not be as relevant as
it once was—these days we are used environment-specific
plugins. On the other hand, the formal verification of seL4
creates a powerful disincentive to changing the kernel, it
really reinforces the desire to have a single platform for all
usage scenarios. Hence, a policy-free approach to dealing
with time is as desirable as it has ever been.

4.6.2 Multicore and Verification
Operating systems and concurrency usually go hand-in-hand.
However, formal software verification using interactive theo-
rem proving avoids concurrency wherever possible. The seL4
design explicitly avoids concurrency using an event-based
execution model to improve the tractability of verification.

However, the ubiquity of multicore processors creates a chal-
lenge: how can one utilize the available cores while retaining
some, if not all, of the formal guarantees?

Our first step to resolving this issue is the clustered multi-
kernel, a hybrid of a big-lock kernel, and a restricted variant
of a multikernel [Baumann et al. 2009] (no memory migra-
tion is permitted between kernels). The clustered multiker-
nel avoids concurrency in the majority of kernel, which en-
ables some of the formal guarantees to continue hold under
some assumptions. The most significant assumptions are that
(1) the lock itself, and any code outside of it, is correct and
race free, and that (2) the kernel is robust to any concurrent
changes to memory shared between the kernel and user-level
(for seL4 is this is only block of virtual IPC message regis-
ters).

The attraction of this approach is that it retains the ex-
isting uniprocessor proof with only small modifications. We
have formally lifted a parallel composition of the uniproces-
sor automatons and shown that refinement still holds. The
disadvantage is that the formal guarantees no longer cover
the entire kernel, and the large-step semantics used by the
lifting framework preclude further extension of the formal
framework to cover reasoning about the correctness of the
lock, user-kernel concurrency, and any relaxation of resource
migration restrictions.

A variation of a clustered multikernel may eventually be
the best approach to obtaining full formal verification of a
multiprocessor kernel, though we make no strong representa-
tions here. However, much more work is required on the for-
mal side to reason about fine-grain interleaving at the scale
of a microkernel.

5. Conclusions
It is rare that a research operating system has both a signifi-
cant developer community as well as a long period of evolu-
tion. L4 is such a system, with 20 years of evolution of the
API, of design and implementation principles, and more than
half a dozen from-scratch implementations. We see this as a
great opportunity to reflect on the principles and know-how
that has stood the test of time, and what has failed to sur-
vive increased insights, changed deployment scenarios and
the evolution of CPU architectures.

We find that the most general principles behind L4, min-
imality and a strong focus on performance, still remain rel-
evant and foremost in the minds of developers. Specifically
we find that the key microkernel performance metric, IPC la-
tency, has remained essentially unchanged (in terms of clock
cycles), as far as comparisons across vastly different ISAs
and micro architectures have any validity, in stark contrast
to the trend identified by Ousterhout [1990] just a few years
before L4 was created. Furthermore, and maybe most sur-
prisingly, the code size has essentially remained constant, a
rather unusual development in software systems.

11 2013/4/29



In terms of systems design, device drivers at user-level,
highly optimised fast paths for performance-critical com-
mon cases, and asynchronous notifications augmenting syn-
chronous IPC, are uncontroversial and are common features
of modern L4 variants.

The rise of virtualization (Linux as standard middleware),
memory-limited embedded applications, and the general de-
sire to simplify, has left its traces. A number of approaches
and features have been dropped and others have evolved to
better support current use cases. Specifically, recursive ad-
dress spaces, large amounts of assembly code, and complex
IPC features, such as timeouts, have been removed. Various
implementation tricks have become obsolete as better (often
simpler) approaches have been discovered. Other implemen-
tation techniques have lost relevance with the evolution of
CPU architecture. However, TLB footprint has a greater im-
pact on microkernel performance than it did 20 years ago,
giving rise to techniques that favor minimizing that footprint.

Security focus and formal verification has driven the evo-
lution of the most recent L4 variant: seL4. This kernel intro-
duces a model for explicit user-level control of kernel mem-
ory, and it has been formally verified to be functionally cor-
rect and to possess the desired high-level security and safety
properties. We think it is a great testament to the brilliance of
the original L4 design that this was achieved while, or maybe
due to, staying true to the original L4 philosophy. It may have
taken an awfully long time, but time has finally proved right
the once radical ideas of Brinch Hansen [1970].

A case in point is the user-level management of kernel ob-
jects, which is the key to provable isolation provided by seL4.
The requirement to be able to reclaim any object indepen-
dently of any others, even where objects are coupled by in-
kernel data structures, is feasible due to the small number of
object types resulting from a consistently simplicity-focussed
design. It is hard to imagine how this cold be achieved in a
kernel providing a more complex API.

There is one concept that has, so far, resisted any satis-
factory abstraction: time. Modulo minor variations, L4 ker-
nels still have a priority-based round-robin scheduler—the
last major holdout of policy in the kernel. This probably rep-
resents the largest limitation of generality of L4 kernels. We
hope it will not take another 20 years to find a solution.

References
M. T. Alexander. Organization and features of the Michigan ter-

minal system. In AFIPS Conf. Proc., 1972 Spring Joint Comp.
Conf., pages 585–591, 1972.

A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel:
A new OS architecture for scalable multicore systems. In 22nd
SOSP, Big Sky, MT, USA, Oct 2009. ACM.

B. Blackham and G. Heiser. Correct, fast, maintainable – choose any
three! In 3rd APSys, pages 13:1–13:7, Seoul, Korea, Jul 2012.
doi: 10.1145/2349896.2349909.

B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and
G. Heiser. Timing analysis of a protected operating system
kernel. In 32nd RTSS, pages 339–348, Vienna, Austria, Nov
2011. doi: 10.1109/RTSS.2011.38.

B. Blackham, Y. Shi, and G. Heiser. Improving interrupt response
time in a verifiable protected microkernel. In 7th EuroSys Conf.,
pages 323–336, Bern, Switzerland, Apr 2012. doi: 10.1145/
2168836.2168869.

P. Brinch Hansen. The nucleus of a multiprogramming operating
system. CACM, 13:238–250, 1970.

A. C. Bromberger, A. P. Frantz, W. S. Frantz, A. C. Hardy, N. Hardy,
C. R. Landau, and J. S. Shapiro. The KeyKOS nanokernel
architecture. In USENIX WS Microkernels & other Kernel Arch.,
pages 95–112, Seattle, WA, USA, Apr 1992.

J. B. Chen and B. N. Bershad. The impact of operating system
structure on memory system performance. In 14th SOSP, pages
120–133, Asheville, NC, USA, Dec 1993.

M. Condict, D. Bolinger, D. Mitchell, and E. McManus. Micro-
kernel modularity with integrated kernel performance. Technical
report, OSF Research Institute, Jun 1994.

D. Elkaduwe, P. Derrin, and K. Elphinstone. Kernel design for
isolation and assurance of physical memory. In 1st WS Isolation
& Integration Emb. Syst., pages 35–40, Glasgow, UK, Apr 2008.
ACM SIGOPS. doi: 10.1145/1435458.

C. Gray, M. Chapman, P. Chubb, D. Mosberger-Tang, and G. Heiser.
Itanium — a system implementor’s tale. In 2005 USENIX, pages
264–278, Anaheim, CA, USA, Apr 2005.

A. Haeberlen. Managing kernel memory resources from user level.
Diploma thesis, System Architecture Group, University of Karl-
sruhe, Germany, Apr 2003. URL http://os.ibds.kit.edu/english/
97 639.php.

H. Härtig and M. Roitzsch. Ten years of research on L4-based real-
time systems. In 8th Real-Time Linux WS, Lanzhou, China, 2006.

H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter. The
performance of µ-kernel-based systems. In 16th SOSP, pages
66–77, St. Malo, France, Oct 1997.

G. Heiser and B. Leslie. The OKL4 Microvisor: Convergence point
of microkernels and hypervisors. In 1st APSys, pages 19–24, New
Delhi, India, Aug 2010.

M. Hohmuth and H. Härtig. Pragmatic nonblocking synchronization
for real-time systems. In 2001 USENIX, Boston, MA, USA,
2001.

T. Jaeger, K. Elphinstone, J. Liedtke, V. Panteleenko, and Y. Park.
Flexible access control using IPC redirection. In 7th HotOS, Rio
Rico, AZ, USA, Mar 1999.

J. L. Keedy. On the programming of device drivers for in-process
systems. Monads Report 5, Dept. of Computer Science, Monash
University, Clayton VIC, Australia, 1979.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. seL4: Formal verification
of an OS kernel. In 22nd SOSP, pages 207–220, Big Sky, MT,
USA, Oct 2009. ACM. doi: 10.1145/1629575.1629596.

A. Lackorzynski and A. Warg. Taming subsystems: capabilities as
universal resource access control in L4. In 2nd WS Isolation &

12 2013/4/29

http://os.ibds.kit.edu/english/97_639.php
http://os.ibds.kit.edu/english/97_639.php


Integration Emb. Syst., pages 25–30, Nuremburg, Germany, Mar
2009.

R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Pol-
icy/mechanism separation in HYDRA. In 5th SOSP, pages 132–
140, 1975.

J. Liedtke. Improving IPC by kernel design. In 14th SOSP, pages
175–188, Asheville, NC, USA, Dec 1993a.

J. Liedtke. A persistent system in real use: Experience of the first 13
years. In 3rd IWOOOS, pages 2–11, Asheville, NC, USA, Dec
1993b. IEEE.

J. Liedtke. On µ-kernel construction. In 15th SOSP, pages 237–250,
Copper Mountain, CO, USA, Dec 1995.

J. Liedtke. Towards real microkernels. CACM, 39(9):70–77, Sep
1996a.

J. Liedtke. µ-Kernels must and can be small. In 5th IWOOOS, pages
152–161, Seattle, WA, USA, Oct 1996b. IEEE.

J. Liedtke and H. Wenske. Lazy process switching. In 8th HotOS,
pages 15–20, Schloss Elmau, Germany, May 2001.

J. Liedtke, U. Bartling, U. Beyer, D. Heinrichs, R. Ruland, and
G. Szalay. Two years of experience with a µ-kernel based OS.
ACM Operat. Syst. Rev., 25(2):51–62, Apr 1991.

J. Liedtke, K. Elphinstone, S. Schönberg, H. Härtig, G. Heiser,
N. Islam, and T. Jaeger. Achieved IPC performance (still the
foundation for extensibility). In 6th HotOS, pages 28–31, Cape
Cod, MA, USA, May 1997a.

J. Liedtke, N. Islam, and T. Jaeger. Preventing denial-of-service
attacks on a µ-kernel for WebOSes. In 6th HotOS, pages 73–79,
Cape Cod, MA, USA, May 1997b. IEEE.

T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein. seL4: from gen-
eral purpose to a proof of information flow enforcement. In IEEE
Symp. Security & Privacy, Oakland, CA, May 2013.

R. Needham and R. Walker. The Cambridge CAP computer and its
protection system. In 6th SOSP, pages 1–10. ACM, Nov 1977.

A. Nourai. A physically-addressed L4 kernel. BE thesis, School
Comp. Sci. & Engin., University NSW, Sydney 2052, Australia,
Mar 2005. Available from publications page at http://ssrg.nicta.
com.au/.

J. Ousterhout. Why aren’t operating systems getting faster as fast as
hardware? In 1990 Summer USENIX, pages 247–56, Jun 1990.

T. Sewell, S. Winwood, P. Gammie, T. Murray, J. Andronick,
and G. Klein. seL4 enforces integrity. In M. C. J. D. van
Eekelen, H. Geuvers, J. Schmaltz, and F. Wiedijk, editors, 2nd
ITP, volume 6898 of LNCS, pages 325–340, Nijmegen, The
Netherlands, Aug 2011. Springer. doi: http://dx.doi.org/10.1007/
978-3-642-22863-6 24.

J. S. Shapiro. Vulnerabilities in synchronous IPC designs. In
IEEE Symp. Security & Privacy, Berkeley, CA, May 2003. URL
citeseer.ist.psu.edu/shapiro03vulnerabilities.html.

J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A fast ca-
pability system. In 17th SOSP, pages 170–185, Charleston,
SC, USA, Dec 1999. URL http://www.eros-os.org/papers/
sosp99-eros-preprint.ps.

M. Warton. Single kernel stack L4. BE thesis, School Comp. Sci.
& Engin., University NSW, Sydney 2052, Australia, Nov 2005.

13 2013/4/29

http://ssrg.nicta.com.au/
http://ssrg.nicta.com.au/
citeseer.ist.psu.edu/shapiro03vulnerabilities.html
http://www.eros-os.org/papers/sosp99-eros-preprint.ps
http://www.eros-os.org/papers/sosp99-eros-preprint.ps

	Introduction
	The L4 Microkernel Family
	Microkernel Design and Implementation
	Principles and concepts
	Minimality
	Recursive address spaces
	User-level device drivers and interrupts as IPC
	Threads as IPC destinations
	Synchronous IPC and long messages
	Hierarchical task management and communication control

	Design and implementation tricks
	Strict process orientation and virtual TCB array
	IPC timeouts
	Lazy scheduling
	Direct process switch
	Register messages
	Non-standard calling convention
	Non-portability

	Is it still L4?

	seL4 Design
	Security Focus
	Memory Management
	The kernel memory problem
	Approach
	Memory allocation
	Memory Re-use

	Object Independence
	Preemption
	Notifications
	Open issues
	Time
	Multicore and Verification


	Conclusions

